Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
Answer:
With more particles there will be more collisions and so a greater pressure. The number of particles is proportional to pressure, if the volume of the container and the temperature remain constant. ... This happens when the temperature is increased.
Explanation:
Answer:
Explanation:
Given that,
Number of turn N = 40
Diameter of the coil d= 11cm = 0.11m
Then, radius = d/2 = 0.11/2 =0.055m
r = 0.055m
Then, the area is given as
A =πr²
A = π × 0.055²
A = 9.503 × 10^-3 m²
Magnetic Field B = 0.35T
Magnetic field reduce to zero in 0.1s, t = 0.1s
so we want to find induce electric field. To find the electric field,(E) we need to find the electric potential (V).
E.M.F is given as
ε = —N • dΦ/dt
Where magnetic flux is given as
Φ = BA
Then, ε = —N • dΦ/dt
ε = —N • dBA/dt
ε = —NBA/t
Then, its magnitude is
ε = NBA/t
Inserting the values of N, B, A and t
ε = 40×0.35×9.503×10^-3/0.1
ε = 1.33 V
Then, using the relationship between Electric field and electric potential
V = Ed
ε = E•d
E = ε/d
E = 1.33/0.11
E = 12.09 V/m
Answer:
option A
Explanation:
The correct answer is option A
The binary star system is the system in which two stars are continuously orbiting each other,
In the eclipsing binary system, two stars revolve about there center of mass and in this system one one-star eclipse another star.
Spectroscopic binary stars are found from the observation of radial velocity and the brighter member of such binary can be seen to have continuously changed the wavelength and periodic velocity.
When the pairs of stars appear to change position in the sky then it is known as visual binary.