Water (H
2O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "universal solvent" [18][19] and the "solvent of life".[20] It is the most abundant substance on Earth[21] and the only common substance to exist as a solid, liquid, and gas on Earth's surface.[22] It is also the third most abundant molecule in the universe.[21]
Water (H
2O)


NamesIUPAC name
water, oxidane
Other names
Hydrogen hydroxide (HH or HOH), hydrogen oxide, dihydrogen monoxide (DHMO) (systematic name[1]), hydrogen monoxide, dihydrogen oxide, hydric acid, hydrohydroxic acid, hydroxic acid, hydrol,[2] μ-oxido dihydrogen
Identifiers
CAS Number
7732-18-5 
3D model (JSmol)
Interactive image
Beilstein Reference
3587155ChEBI
CHEBI:15377 
ChEMBL
ChEMBL1098659 
ChemSpider
937 
Gmelin Reference
117
PubChem CID
962
RTECS numberZC0110000UNII
059QF0KO0R 
InChI
InChI=1S/H2O/h1H2 
Key: XLYOFNOQVPJJNP-UHFFFAOYSA-N 
SMILES
O
Properties
Chemical formula
H
2OMolar mass18.01528(33) g/molAppearanceWhite crystalline solid, almost colorless liquid with a hint of blue, colorless gas[3]OdorNoneDensityLiquid:[4]
0.9998396 g/mL at 0 °C
0.9970474 g/mL at 25 °C
0.961893 g/mL at 95 °C
Solid:[5]
0.9167 g/ml at 0 °CMelting point0.00 °C (32.00 °F; 273.15 K) [a]Boiling point99.98 °C (211.96 °F; 373.13 K) [6][a]SolubilityPoorly soluble in haloalkanes, aliphaticand aromatic hydrocarbons, ethers.[7]Improved solubility in carboxylates, alcohols, ketones, amines. Miscible with methanol, ethanol, propanol, isopropanol, acetone, glycerol, 1,4-dioxane, tetrahydrofuran, sulfolane, acetaldehyde, dimethylformamide, dimethoxyethane, dimethyl sulfoxide, acetonitrile. Partially miscible with Diethyl ether, Methyl Ethyl Ketone, Dichloromethane, Ethyl Acetate, Bromine.Vapor pressure3.1690 kilopascals or 0.031276 atm[8]Acidity (pKa)13.995[9][10][b]Basicity (pKb)13.995Conjugate acidHydroniumConjugate baseHydroxideThermal conductivity0.6065 W/(m·K)[13]
Refractive index (nD)
1.3330 (20 °C)[14]Viscosity0.890 cP[15]Structure
Crystal structure
Hexagonal
Point group
C2v
Molecular shape
Bent
Dipole moment
1.8546 D[16]Thermochemistry
Heat capacity (C)
75.375 ± 0.05 J/(mol·K)[17]
Std molar
entropy (So298)
69.95 ± 0.03 J/(mol·K)[17]
Std enthalpy of
formation (ΔfHo298)
−285.83 ± 0.04 kJ/mol[7][17]
Gibbs free energy (ΔfG˚)
−237.24 kJ/mol[7]
Answer:
The answer is Relative plenitude alludes to the amount of a specific isotope is available in a given measure of test.
Explanation:
The 'relative plenitude' of an isotope implies the level of that specific isotope that happens in nature. Most components are comprised of a blend of isotopes. The total of the rates of the particular isotopes must indicate 100%. The relative nuclear mass is the weighted normal of the isotopic masses. The percent plenitude of every sort of sweets reveals to you what number of every sort of Aufbau there are in each 100 CANDIES. Percent wealth is additionally relative plenitude. This is only a method for giving us a photo on which kind exists all the more every now and again.
Answer:
fluoride ion with a charge of -1
Explanation:
If a fluorine atom gains an electron, it becomes a fluoride ion with an electric charge of -1.
Answer:- Frequency is
.
Solution:- frequency and wavelength are inversely proportional to each other and the equation used is:

where,
is frequency, c is speed of light and
is the wavelength.
Speed of light is
.
We need to convert the wavelength from nm to m.
(
)

= 
Now, let's plug in the values in the equation to calculate the frequency:

=
or 
since, 
So, the frequency of the green light photon is
.
18
In chemistry, a group is a column of elements in the periodic table of the chemical elements. There are 18 numbered groups in the periodic table; the f-block columns are not numbered.