Answer:
The question is a problem that requires the principles of fracture mechanics.
and we will need this equation below to get the Max. Stress that exist at the tip of an internal crack.
Explanation:
Max Stress, σ = 2σ₀√(α/ρ)
where,
σ₀ = Tensile stress = 190MPa = 1.9x10⁸Pa
α = Length of the cracked surface = (4.5x10⁻²mm)/2 = 2.25x10⁻⁵m
ρ = Radius of curvature of the cracked surface = 5x10⁻⁴mm = 5x10⁻⁷m
Max Stress, σ = 2 x 1.9x10⁸ x (2.25x10⁻⁵/5x10⁻⁷)⁰°⁵
Max Stress, σ = 2 x 1.9x10⁸ x 6.708 Pa
Max Stress, σ = 2549MPa
Hence, the magnitude of the maximum stress that exists at the tip of an internal crack = 2549MPa
Answer:
See explaination
Explanation:
2. 0-1 km shear value: taking winds at 1000mb and 850 mb
15 kts south easterly and 50 kts southerly
Vector difference 135/15 and 180/50 will be 170/61 or southerly 61 kts
3. 0-6 km shear value: taking winds at 1000 mb and 500 mb
15 kts south easterly and 40 kts westerly
Vector difference 135/15 and 270/40 will be 281/51 kts
please see attachment
Answer:
It has poor tensile strength despite having high compressive strength
Explanation:
Concrete exhibits high compressive strength when used. However, it has very low compressive strength. This is the reason why concrete is normally combined with steel to make a composite building material called reinforced concrete. The steel reinforces concrete hence increasing the tensile strength in RC buildings. The end composite is durable and fireproof. Generally, the main reason why concrete is not use on its own is due to its poor tensile strength.
Answer:
discharge = 0.310976 m³/s
Explanation:
given data
rectangular channel wide = 2.9 m
length of weir L = 1.9 m
water level H = 0.2 m
solution
we get here discharge that is express as
discharge =
............................1
we consider here Coefficient of discharge Cd = 0.62
put here value we get
discharge =
discharge = 0.310976 m³/s
A trap in the condensate line prevents D. All of the above.
<h3>What is the idea of the trap?</h3>
It should be noted that the idea of the condensate drain trap is to use the weight of the water to stop the flow of air.
Based on the information given, all the options are correct. Therefore, the correct option is D.
a. air and foreign material from being drawn up into the drain line
b. additional cooling load from warm air drawn up into the air handler
c. insect invasion of the system
d. all of the above
Learn more about cooling on:
brainly.com/question/13748261
#SPJ12