Answer:
0.8c and -0.14c
Explanation:
The first fragment will have a speed of +0.5c respect of a frame of reference moving at +0.5c
Lest name v the velocity of the frame of reference, and u' the velocity of the object respect of this moving frame of reference.
The Lorentz transform for velocity is:
u = (u' + v) / (1 + (u' * v) / c^2)
u = (0.5c + 0.5c) / (1 + (0.5c * 0.5c) / c^2) = 0.8c
The other fragment has a velocity of u' = -0.6c respect of the moving frame of reference.
u = (-0.6v + 0.5c) / (1 + (0.5c * 0.5c) / c^2) = -0.14c
Answer:
A. Zero
Explanation:
The force on a coil of N turns, enclosing an area, A and carrying a current I in the presence of a magnetic field B, is :
F = N * I * A * B * sinθ
Where θ is the angle between the normal of the enclosed area and the magnetic field.
Since the normal of the area is parallel to the magnetic field, θ = 0
Hence:
F = NIABsin0
F = 0 or Zero
Answer:
102 kg.m/s
Explanation:
m = Mass of hammer = 12 kg
v = Final velocity = 8.5 m/s
u = Initial velocity = 0
t = Time taken = 8 ms
Force acting over a given amount of time or change in momentum is known as impulse.
Impulse

Impulse given to the nail is 102 kg.m/s