Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
To solve this problem it is necessary to apply the concepts related to the Centrifugal Force and the Gravitational Force. Since there is balance on the body these two Forces will be equal, mathematically they can be expressed as


Where,
m = Mass
G =Gravitational Universal Constant
M = Mass of the Planet
r = Distance/Radius
Re-arrange to find the velocity we have,

At the same time we know that the period is equivalent in terms of the linear velocity to,


If our values are that the radius of mars is 3400 km and the distance above the planet is 100km more, i.e, 3500km we have,



Replacing we have,



Therefore the correct answer is C.
Answer:
The material with higher modulus will stretch less than
The material with lower modulus
Explanation:
A material with a higher modulus is stiffer and has better resistance to deformation. The modulus is defined as the force per unit area required to produce a deformation or in other words the ratio of stress to strain.
E= stress/stain
Hooks law states that provided the elastic limit is not exceeded the extension e of a spring is directly proportional to the load or force attached
F=ke
Where k is the constant which gives the measure of the spring under tension
Answer:
Our planet is surrounded by a layer of gases called the atmosphere. ... ➢ Without our atmosphere, there would be no life on earth. ➢ Scientists divided the atmosphere into four layers according to temperature: troposphere, stratosphere, mesosphere, and thermosphere.
Explanation: