To determine the mass of the sample, first find the volume difference after and before the aluminum was placed, the volume change is equal to the volume of the submerged object, in this case aluminum.
Then knowing volume of aluminum and the density of it, we can solve for the mass.
D = m/v
Dv = m
2.7 g/ml • 8 ml = 21.6 grams.
Answer:
χH₂ = 0.4946
χN₂ = 0.4130
χAr = 0.0923
Explanation:
The total pressure of the mixture (P) is:
P = pH₂ + pN₂ + pAr
P = 443.0 Torr + 369.9 Torr + 82.7 Torr
P = 895.6 Torr
We can find the mole fraction of each gas (χ) using the following expression.
χi = pi / P
χH₂ = pH₂ / P = 443.0 Torr/895.6 Torr = 0.4946
χN₂ = pN₂ / P = 369.9 Torr/895.6 Torr = 0.4130
χAr = pAr / P = 82.7 Torr/895.6 Torr = 0.0923
There are 11 Carbon atoms in the compound.
<u>Solution:</u>
Carbon atom count is the ratio of the M peak to the M+1 peak.

Here M peak is 57.10% and M+1 peak is 6.83%. On applying the values in the formula we get,

Therefore, the number of Carbon atoms in the compound are 11.
Refer the image attached below for a better understanding of M peak and M+1 peak.
The heaviest ion that has the greatest m/z value is said to be the molecular ion peak in mass spectrum.
I don’t know what you mean by classification exactly but it is a redox equation. The reactant side of carbon is losing hydrogen to form carbon dioxide. And oxygen is gaining hydrogen which gives you the water. Redox reactions are also known as combustion reactions.