Answer:
The correct answer is 0.206 moles
Explanation:
According to the given scenario, the calculation of the number of moles of ammonium chloride is available in the resulting solution is given below:
Given that
Amount of
is 11.0 grams
And, the volume is 235 mL
Now the molar mass of
is 53.49g/mol
So, the number of moles presented is
= 11.0 ÷ 53.49
= 0.206 moles
hence, the number of moles of ammonium chloride are available in the resulting solution is 0.206 moles
<span>C2H5
First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2.
Carbon = 12.0107
Hydrogen = 1.00794
Oxygen = 15.999
Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488
Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087
Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass.
moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles
moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles
The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule.
Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen.
moles C = 0.50899
moles H = 0.638361 * 2 = 1.276722
We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon.
total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185
7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked.
Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen.
0.50899 / 1.276722 = 0.398669
0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5.
Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is
C2H5</span>
Answer:
Zinc Chloride + Difluorine -----> Zinc Fluoride + Dichlorine
Explanation:
ZnCl2 + F2 → ZnF2 + Cl2
First, we must know what happens in the precipitation reaction. This type of reaction is a double replacement reactions. It is consists of two reactant compounds which interchange cations and anions to form two products. One of the products is an insoluble solid called a precipitate. For the precipitation of CaCO₃, there are two consecutive reactions involved:
1. Slaking of quicklime, CaO
CaO + H₂O ⇒ Ca(OH)₂
2. Precipitation
Ca(OH)₂ + CO₂ ⇒ CaCO₃ + H₂O
The ions that make up the H₂O molecule are H⁺ and OH⁻. According to solubility rules, the cation (positively charged ion) is likely to be attracted to an anion (negatively charged ion). Together, they form an ionic bond. This type of bond is when there is a complete transfer of electrons between the two. The Ca²⁺ cation lacks 2 electrons, while the anion OH⁻ has an excess 1 electron. In order to be stable, 1 Ca²⁺ ion and 2 OH⁻ ions must combine.
Therefore, the answer is OH⁻ ion.