Answer:
c. 7.5 m/s south
Explanation:
<u>Given the following data;</u>
Velocity of duck = 10m/s due South
Velocity of wind = 2.5m/s
To find the resultant velocity;
Since we know that the duck is flying against a gust of wind, we would have to subtract the velocity of the gust of wind from that of the duck.
This ultimately implies that, the gust of wind (headwind) would decrease the resulting velocity of the duck because it approaches the duck from the front.
Resultant velocity, /V/ = 10 - 2.5
Resultant velocity, /V/ = 7.5m/s South.
<em>Therefore, the resultant velocity of the duck is 7.5m/s south. </em>
Answer:
370.6 nm
Explanation:
wavelength in vacuum = 494 nm
refractive index of water with respect to air = 1.333
Let the wavelength of light in water is λ.
The frequency of the light remains same but the speed and the wavelength is changed as the light passes from one medium to another.
By using the definition of refractive index

where, n be the refractive index of water with respect to air
By substituting the values, we get

λ = 370.6 nm
Thus, the wavelength of light in water is 370.6 nm.
Answer:position relative to the starting point
Explanation:
Explanation :
Using the law of conservation of energy
When two cars collide with each other then the momentum is same before collision and after collision but energy is changed after collision in form of heat and sound.
We know this collision is inelastic collision.
In Inelastic collision, when two objects collide with each other then the momentum is conserved but kinetic energy is not conserved.