Answer:
i = 0.477 10⁴ B
the current flows in the counterclockwise
Explanation:
For this exercise let's use the Ampere law
∫ B . ds = μ₀ I
Where the path is closed
Let's start by locating the current vines that are parallel to the z-axis, so it must be exterminated along the x-axis and as the specific direction is not indicated, suppose it extends along the y-axis.
From BiotSavart's law, the field must be perpendicular to the direction of the current, so the magnetic field must go in the x direction.
We apply the law of Ampere the segment parallel to the x-axis is the one that contributes to the integral, since the other two have an angle of 90º with the magnetic field
Segment on the y axis
L₀ = (y2-y1)
L₀ = 3-0 = 3 cm
Segment on the point x = 2 cm
L₁ = 3-0
L₁ = 3cm
B L = μ₀ I
B 2L = μ₀ I
i = 2 L B /μ₀
i= 2 0.03 / 4π 10⁻⁷ B
i = 4.77 10⁴ B
The current is perpendicular to the magnetic field whereby the current flows in the counterclockwise
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
Answer:
air resistance, gravitational force
Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s