As electrons move through the conductor, some collide with atoms, other electrons, or impurities in the metal.
Answer:
2991.42 N
Explanation:
For this problem, we'll use the equations: momentum= mass x velocity and impulse = change in momentum, and impulse=force x time.
initial momentum; p1 = 0.17 x 41 = 6.97 kg.m/s
final momentum; p2 = 0, because final velocity is 0 m/s
Thus,
impulse = p1 - p2= 6.97 - 0 = 6.97 kg.m/s
Finally, impulse= Force x time,
Thus, Force = Impulse/time
Force= 6.97/ (2.33 x 10^(-3)) = 2991.42 N
It is important to properly balance a centrifuge because an unbalanced machine can damage the rotor, cause catastrophic damage to the machine itself, or even injure or kill lab personnel working in the room. Balancing a centrifuge involves spreading the weight of the samples across the entire rotor.
Answer:
An object in a motion when it is continuously changing its position based on a reference point and observed by a person or a device.
Answer:
4334.4 J
Explanation:
Work done equals to kinetic energy change
KE=½mv²
Change in KE is given by
∆KE=½m(v²-u²)
Where m is mass of water-skier, KE is kinetic energy, ∆KE is the change in kinetic energy, v is final velocity and u is initial velocity.
Substituting 72 kg for m, 12.1 m/s for v and 5.10 m/s for u then
∆KE=½*72(12.1²-5.10²)=4334.4J
Therefore, the work done by the net external force acting on the skier is equal to 4334.4 J