1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
3 years ago
7

Identify the velocity-versus-time plot(s) that correspond to motion under a constant, non-zero acceleration.

Physics
1 answer:
ICE Princess25 [194]3 years ago
5 0

Answer:

See explanation

Explanation:

The question is incomplete because the images were not attached but I will try to help you as much as possible.

Constant acceleration implies that the velocity increases uniformly with time.

The graph of constant acceleration is a straight line graph having a slope. The slope of the graph is constant at any point along the straight line.

The image attached shows a velocity-time graph depicting constant acceleration.

You might be interested in
A crane lifts an air conditioner to the top of a building. If the building is 12 m high, and the air conditioner has a mass of 2
Pepsi [2]

Work needed = 23,520 J

<h3> Further explanation </h3>

Given

height = 12 m

mass = 200 kg

Required

work needed by the crane

Solution

Work is the transfer of energy caused by the force acting on a moving object  

Work is the product of force with the displacement of objects.  

Can be formulated  

W = F x d  

W = Work, J, Nm  

F = Force, N  

d = distance, m  

F = m x g

Input the value :

W = mgd

W = 200 kg x 9.8 m/s²x12 m

W = 23520 J

8 0
3 years ago
Convert the mass to kgs thanks
Natali [406]
Memorize this and you'll be able to do ALL of these:  <em>1  kg = 1,000 g</em>

So if you have some grams, divide the number by 1,000 to get kilograms.

1,000 g = 1.000 kg

500 g = 0.500 kg

100 g = 0.100 kg

50 g = 0.050 kg

20 g = 0.020 kg

10 g = 0.010 kg
4 0
3 years ago
On your first trip to Planet X you happen to take along a 180 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. You'r
lys-0071 [83]

Answer:

g_x = 3.0 m / s^2

Explanation:

Given:

- Change in length of spring [email protected] = 22.6 cm

- Time taken for 11 oscillations t = 19.0 s

Find:

- The value of gravitational free fall g_x at plant X:

Solution:

- We will assume a simple harmonic motion of the mass for which Time is:

                                 T  = 2*pi*sqrt(k / m )    ...... 1

- Sum of forces in vertical direction @equilibrium is zero:

                                 F_net = k*x - m*g_x = 0

                                 (k / m) = (g_x / x)    .... 2

- substitute Eq 2 into Eq 1:

                                  2*pi / T = sqrt ( g_x / x )

                                   g_x = (2*pi / T )^2 * x

- Evaluate g_x:

                                  g_x = (2*pi / (19 / 11) )^2 * 0.226

                                  g_x = 3.0 m / s^2

                                 

                       

3 0
3 years ago
I got part c right but idk why the other parts are wrong HELP!
dedylja [7]

a) The impulse is 76.5 Ns

b) The average force is 546.4 N

c) The final speed is 31.5 m/s

Explanation:

a)

The impulse exerted on an object is defined as

J=\int F\Delta t

where

F is the magnitude of the force exerted on the object

\Delta t is the time interval during which the force is applied

If we consider a graph of the force applied vs time, it follows that the impulse exerted is equal to the area under the graph.

Therefore, in this problem, we can calculate the impulse by computing the area under the graph. We have a trapezium, whose bases are

B=0.14-0 = 0.14s\\b=8-5=3s

and whose height is

h=900 N

Therefore, the area (and the impulse) is

J=\frac{(B+b)h}{2}=\frac{(0.14+0.03)(900)}{2}=76.5 Ns

b)

In this problem, the force applied is not constant. However, we can rewrite the impulse also as

J=F_{avg} \Delta t

where

F_{avg} is the average force exerted during the whole time \Delta t

In this problem we have

J = 76.5 Ns is the impulse (calculated in part a)

\Delta t = 0.14 s is the time interval

Solving for the average force, we find

\Delta t = \frac{J}{F_{avg}}=\frac{76.5}{0.14}=546.4 N

c)

According to the impulse theorem, the impulse exerted on an object is equal to the change in momentum of the object:

J=\Delta p = m(v-u)

where

m is the mass of the object

v is the final velocity

u is the initial velocity

In this problem, we have

J = 76.5 Ns

m = 3.0 kg is the mass

u = 6.0 m/s is the initial velocity

Solving for v, we find the final velocity (and speed):

v=u+\frac{J}{m}=6.0+\frac{76.5}{3}=31.5 m/s

Learn more about impulse and momentum:

brainly.com/question/9484203

#LearnwithBrainly

6 0
3 years ago
How do you find the velocity after a collision
Evgen [1.6K]

Answer:

In a collision, the velocity change is always computed by subtracting the initial velocity value from the final velocity value. If an object is moving in one direction before a collision and rebounds or somehow changes direction, then its velocity after the collision has the opposite direction as before.

Explanation:

7 0
4 years ago
Other questions:
  • A food web illustrates a snake eating a rat. What is the role of the snake in the food web? A. Decomposer B.Secondary consumer C
    6·2 answers
  • Which best explains why the pencil seems bent?
    10·1 answer
  • Consider an unknown charge that is released from rest at a particular location in an electric field so that it has some initial
    12·1 answer
  • Article 5 of the Fundamental Orders of Connecticut is MOST LIKELY related to which idea?
    15·1 answer
  • Which statement is true about nuclear fusion? it is caused by the same process that causes nuclear fission.
    14·2 answers
  • What is a Serous circuit
    14·2 answers
  • A solid sphere of radius R has a uniform charge density and total charge Q. Find the total energy of the sphere U in terms of
    10·1 answer
  • 1. Alexandra and Rachel are on a train that sounds a whistle at a constant frequency as
    12·2 answers
  • A big red fish with a mass of 20 kg swims with a velocity of 2 m/s toward a small, stationary green fish which has a mass of 10
    13·1 answer
  • In order to find the resultant of two vectors we must use the pythagoran therom, a +b2-2. Where the crepresents the resultant ve
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!