When I become a CEO (Chief Executive Officer) of a large company (like Amazon or Tesla), I would make the company more humane, with great parameters of working conditions, paying good salaries, so we would improve production and people would be happier , being an example to the whole world of a company that values and respects its employees.
<h3>Who is the CEO?</h3>
The CEO is essentially the highest-ranking executive in the company. He has most of the power. He reports directly to the board of directors. On the other hand, the president is below the CEO in the company hierarchy.
<h3>What does the CEO of a company do?</h3>
Direct the company's next steps through strategic planning; Take care, together with directors and shareholders of the company's health; Implement or modify processes within the company or sectors; Represent and relate to external audiences.
With this information, we can conclude that I would make the company more humane, with great parameters of working conditions
Learn more about CEO in brainly.com/question/14747141
#SPJ1
Work = force * distance
and newton*meters = Joule
In this case, work = 250N*50m = 12500 J
So the answer is D) 12,500 J
Answer:
Gravity. An object is moving across a surface, but it does not gain or lose speed.
Explanation:
The basic idea. Physicists see gravity as one of the four fundamental forces that govern the universe, alongside electromagnetism and the strong and weak nuclear forces.
Hope it helps! Brainliest?
Stress required to cause slip on in the direction [ 1 1 0 ] is 7.154 MPa
<u>Explanation:</u>
Given -
Stress Direction, A = [1 0 0 ]
Slip plane = [ 1 1 1]
Normal to slip plane, B = [ 1 1 1 ]
Critical stress, Sc = 2.92 MPa
Let the direction of slip on = [ 1 1 0 ]
Let Ф be the angle between A and B
cos Ф = A.B/ |A| |B| = [ 1 0 0 ] [1 1 1] / √1 √3
cos Ф = 1/√3
σ = Sc / cosФ cosλ
For slip along [ 1 1 0 ]
cos λ = [ 1 1 0 ] [ 1 0 0 ] / √2 √1
cos λ = 1/√2
Therefore,
σ = 2.92 / 1/√3 1/√2
σ = √6 X 2.92 MPa = 2.45 X 2.92 = 7.154MPa
Therefore, stress required to cause slip on in the direction [ 1 1 0 ] is 7.154MPa
In order to compute the final velocity of the trains, we may apply the principle of conservation of momentum which is:
initial momentum = final momentum
m₁v₁ = m₂v₂
The final mass of the trains will be:
10,000 + 10,000 = 20,000 kg
Substituting the values into the equation:
10,000 * 3 = 20,000 * v
v = 1.5 m/s
The final velocity of the trains will be 1.5 m/s