Answer:

Explanation:
from the ideal gas law we have
PV = mRT


HERE R is gas constant for dry air = 287 J K^{-1} kg^{-1}


We know by ideal gas law



for m_2



WE KNOW
PV = mRT
V, R and T are constant therefore we have
P is directly proportional to mass




Answer:
The intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².
Explanation:
Given;
intensity of the sound level, dB = 60 dB
The intensity of the sound in W/m² is calculated as;
![dB = 10 Log[\frac{I}{I_o} ]\\\\](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C)
where;
I₀ is threshold of hearing = 1 x 10⁻¹² W/m²
I is intensity of the sound in W/m²
Substitute the given values and for I;
![dB = 10 Log[\frac{I}{I_o} ]\\\\60 = 10 Log[\frac{I}{I_o} ]\\\\6 = Log[\frac{I}{I_o} ]\\\\10^6 = \frac{I}{I_o} \\\\I = 10^6 \ \times \ I_o\\\\I = 10^6 \ \times \ 1^{-12} \ W/m^2 \\\\I = 1\ \times \ 10^{-6} \ W/m^2](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C60%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C6%20%3D%20%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C10%5E6%20%3D%20%5Cfrac%7BI%7D%7BI_o%7D%20%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%20I_o%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%201%5E%7B-12%7D%20%5C%20W%2Fm%5E2%20%5C%5C%5C%5CI%20%3D%201%5C%20%5Ctimes%20%5C%2010%5E%7B-6%7D%20%5C%20W%2Fm%5E2)
Therefore, the intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².
A. Jupiter largest and most massive planet in the solar system
Jupiter has a huge permanent storm that looks like a red spot in images
Jupiter has at least 61 moons orbiting it, some of which are very large
Jupiter located closer to the sun than Kuiper Belt
<h3>
Which option that best describes the planet Jupiter?</h3>
Jupiter came on fifth number from the sun and the Jupiter is the massive planet present in our solar system. It contains the big storms like great red spot. The surface of the Jupiter is gas made giant but the surface of the Jupiter is not solid, but it may have a solid inner core about the size of Earth.
The Jupiter contain at least 61 moons which orbiting the Jupiter . The life on the Jupiter is impossible because the Jupiter contain very much pressure, it has volatile surface and the temperature of the Jupiter is very hot than that of the earth.
So we can conclude that option A is the right answer.
Learn more about Jupiter here: brainly.com/question/15044627
#SPJ1
Answer:
The correct option is;
Biochemist → Archivist → Civil Engineer → Engineering Technician
Explanation:
1) Biochemist require the completion of a science degree or applied science degree, while biochemist usually hold a PhD to perform research independently, while entry level positions in the profession require a masters or bachelors degree
The PhDs usually require about 5 years to complete, after obtaining the masters degree
2) The general educational requirement to become an archivist is a master's degree in the fields of library science, history, public administration, political science, or archival science, which requires the completion of a bachelors degree followed by the completion of the masters degree which is thus 4 to 6 years
3) Civil engineer title is awarded to holders of a bachelors degree in Civil Engineering which gives the strong mathematical and science background required in the profession usually. The Civil Engineering program duration is five years
4) The engineering technician consist of 8.2% with masters degree, 42.0% have bachelors degree, while it is also possible to become an engineering technician with a GED or a high school degree
Therefore, the usual duration of study to become an engineering technician is two years of an associate degree program.