For pure water the PH level is 7
The general rule followed is that if electronegativity difference is greater than 2, then it is considered an ionic bond. An ionic bond is a type of bond characterizing a transfer of electrons within a bond. Common examples are salts which adds that ionic bonds are common between a metal and a nonmetal. Therefore, the best answer from above is letter B.
Answer:
197mL of 0,506M HCl
Explanation:
The reaction of HCl + BaCO₃ is:
BaCO₃(s) + 2HCl → BaCl₂(aq) + CO₂ + H₂O.
The moles of BaCO₃ in 9,85 g are:
9,85 g of BaCO₃ ×
= <em>0,0499 moles of BaCO₃</em>
As 1 mol of BaCO₃ reacts with two moles of HCl, for a complete reaction of BaCO₃ to dissolve this compound in water you need:
0,0499 moles of BaCO₃ ×
=<em> 0,0998 moles of HCl</em>
If you have a 0,506M HCl, you need to add:
0,0998 moles of HCl×
= 0,197 L ≡ 197mL
I hope it helps!
The pH of the buffer is 6.1236.
Explanation:
The strength of any acid solution can be obtained by determining their pH. Even the buffer solution strength of the weak acid can be determined using pH. As the dissociation constant is given, we can determine the pKa value as the negative log of dissociation constant value.
![pKa=-log[H] = - log [ 5.66 * 10^{-7}]\\ \\pka = 7 - log (5.66)=7-0.753=6.247\\\\pka = 6.247](https://tex.z-dn.net/?f=pKa%3D-log%5BH%5D%20%3D%20-%20log%20%5B%205.66%20%2A%2010%5E%7B-7%7D%5D%5C%5C%20%5C%5Cpka%20%3D%207%20-%20log%20%285.66%29%3D7-0.753%3D6.247%5C%5C%5C%5Cpka%20%3D%206.247)
The pH of the buffer can be known as
![pH = pK_{a} + log[\frac{[A-]}{[HA]}}]](https://tex.z-dn.net/?f=pH%20%3D%20pK_%7Ba%7D%20%2B%20log%5B%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D%7D%5D)
The concentration of ![[A^{-}] = Moles of [A]/Total volume = 0.608/2 = 0.304 M\\](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20Moles%20of%20%5BA%5D%2FTotal%20volume%20%3D%200.608%2F2%20%3D%200.304%20M%5C%5C)
Similarly, the concentration of [HA] = 
Then the pH of the buffer will be
pH = 6.247 + log [ 0.304/0.404]

So, the pH of the buffer is 6.1236.