Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
Answer:
Explanation:
Formula
W = I * E
Givens
W = 150
E = 120
I = ?
Solution
150 = I * 120 Divide by 120
150/120 = I
5/4 = I
I = 1.25
Note: This is an edited note. You have to assume that 120 is the RMS voltage in order to go any further. That means that the peak voltage is √2 times the size of 120. The current has the same note applied to it. If the voltage is its rms value, then the current must (assuming the properties of the bulb do not change)
On the other hand, if the voltage is the peak value at 120 then 1.25 will be correct.
However I would go with the other answerer's post and multiply both values by √2
Answer:
Option B. Decreases
Explanation:
Coulomb's law states that:
F = Kq₁q₂ / r²
Where:
F => is the force of attraction between two charges
K => is the electrical constant.
q₁ and q₂ => are the two charges
r => is the distance apart.
From the formula:
F = Kq₁q₂ / r²
The force of attraction (F) is inversely proportional to the square of their separating distance (r).
This implies that as the distance between them increase, the force of attraction between the two charges will decrease and as the distance between two charges decrease, the force of attraction between them will increase.
Considering the question given above and the illustration given above, the force of attraction will decrease as their distance of separation increases.
Option B gives the right answer to the question.
Answer:
The car’s kinetic energy at the bottom is 4 times its kinetic energy at the top. The car has 1800 joules of kinetic energy at the bottom of the hill.
Explanation:
Answer:
the correct one is 2. the equipotential lines must be closer together where the field has more intensity
Explanation:
The equipotential line concept is a line or surface where a test charge can move without doing work, therefore the potential in this line is constant and they are perpendicular to the electric field lines.
In this exercise we have a charge and a series of equipotential lines, if this is a point charge the lines are circles around the charge, where the potential is given by
V = k q / r
also the electric field and the electuary potential are related
E =
therefore the equipotential lines must be closer together where the field has more intensity
When checking the answers, the correct one is 2