The answer is C. You must divide your wavelength and your frequency to get your answer.
Answer:
F = 7,916,955.0N
Explanation:
According to newtons second law
Force = mass * acceleration
Given
mass = 52.0kg
distance S = 22.0m
time t = 17.0 ms = 0.017s
We need to get the acceleration first using the formula;
S = ut+ 1/2at²
22 = 0 + 1/2 a(0.017²)
22 = 0.0001445a
a = 22/0.0001445
a = 152,249.13m/s²
The magnitude of the average force exerted will be;
F = ma
F = 52 * 152,249.13
F = 7,916,955.0N
Answer:
Check the explanation
Explanation:
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
The image is virtual
The image is upright
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
Kindly check the diagram in the attached image below.
Answer:
below
Explanation:
Ice melts, meaning it has a watery layer upon its surface. This allows things to be moving like they are on a liquid but it has the solidity of a solid. The thin metal of the ice skates also decrease the surface area meaning it exerts more force but in turn, it allows you to move faster and further reduces friction.
Answer: Work Done would remain same.
Let us assume that the velocity is constant while taking the load up the inclined plane. Then, the kinetic energy would remain the same. This is because kinetic energy is dependent on velocity
. If that is constant, the kinetic energy would remain same. The potential energy is dependent on the height
. If the height is changed, then potential energy varies. In the question, it is mentioned that without changing the height, the length of the inclined plane is changed. Therefore, the potential energy would be same as before.
We know, work done is equal to potential energy plus kinetic energy. Since there is no change in any of these, the required work done would not change.