Salts is the correct awnser
The pH a 0.25 m solution of C₆H₅NH₂ is equal to 3.13.
<h3>How do we calculate pH of weak base?</h3>
pH of the weak base will be calculate by using the Henderson Hasselbalch equation as:
pH = pKb + log([HB⁺]/[B])
pKb = -log(1.8×10⁻⁶) = 5.7
Chemical reaction for C₆H₅NH₂ is:
C₆H₅NH₂ + H₂O → C₆H₅NH₃⁺ + OH⁻
Initial: 0.25 0 0
Change: -x x x
Equilibrium: 0.25-x x x
Base dissociation constant will be calculated as:
Kb = [C₆H₅NH₃⁺][OH⁻] / [C₆H₅NH₂]
Kb = x² / 0.25 - x
x is very small as compared to 0.25, so we neglect x from that term and by putting value of Kb, then the equation becomes:
1.8×10⁻⁶ = x² / 0.25
x² = (1.8×10⁻⁶)(0.25)
x = 0.67×10⁻³ M = [C₆H₅NH₃⁺]
On putting all these values on the above equation of pH, we get
pH = 5.7 + log(0.67×10⁻³/0.25)
pH = 3.13
Hence pH of the solution is 3.13.
To know more about Henderson Hasselbalch equation, visit the below link:
brainly.com/question/13651361
#SPJ4
Answer:
The electron configuration for a
Mn3+ ion is [Ar]3d4
Explanation:
Protons and neutrons are in the center of the atom, making up the nucleus. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
Answer:
We need 3910.5 joules of energy
Explanation:
Step 1: Data given
Mass of aluminium = 110 grams
Initial temperature = 52.0 °C
Final temperature = 91.5 °C
Specific heat of aluminium = 0.900 J/g°C
Step 2: Calculate energy required
Q = m*c*ΔT
⇒with Q = the energy required = TO BE DETERMINED
⇒with m = the mass of aluminium = 110 grams
⇒with c = the specific heat of aluminium = 0.900 J/g°C
⇒with ΔT = the change in temperature = T2 - T1 = 91.5 °C - 52.0 °C = 39.5 °C
Q = 110 grams * 0.900 J/g°C * 39.5
Q = 3910.5 J
We need 3910.5 joules of energy