Answer: -
0.1 ml of bleach should be added to each liter of test solution.
Explanation:-
Let the volume of bleach to be added is B ml.
Density of stock solution = 1.0 g/ml
Mass of stock solution = Volume of stock x density of stock
= B ml x 1.0 g/ml
= B g
Amount of NaOCl in this stock solution = 5% of B g
=
x B g
= 0.05 B g
Now each test solution must be added 5 mg/l NaOCl.
Thus each liter of test solution must have 5 mg.
Thus 0.05 B g = 5 mg
= 0.005 g
B = 
= 0.1
Thus 0.1 ml of bleach should be added to each liter of test solution.
The molecular weight of hemoglobin can be calculated using osmotic pressure
Osmotic pressure is a colligative property and it depends on molarity as
πV = nRT
where
π = osmotic pressure
V = volume = 1mL = 0.001 L
n = moles
R = gas constant = 0.0821 L atm / mol K
T = temperature = 25°C = 25 + 273 K = 298 K
Putting values we will get value of moles

we know that

Therefore

The best explanation would be that Gases were released during the Chemical reaction, causing a loss of Mass.
Answer:
- <u><em>No, I would not consider a metal to be a plasma because plasma is just another state of matter, and the copper wire is in solid state.</em></u>
Explanation:
Metal is not a state of matter. Metals can be solid or liquid (molten) depending on their melting point and the temperature at which they are.
Plasma is a state of matter, similar to gas, but it is reached only at very high temperatures like in the Sun. The particles in plasma state are not neutral atoms or molecules but negatively charged ions and electrons.
The copper wire is yet a solid, thus it cannot be considered a plasma.
Metals can be in plasma state only if the temperature is too high, like the temperatures in the stars. In fact, the metals in the Sun and other hotter stars are in plasma state.