1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zlopas [31]
3 years ago
10

A factory worker pushes a 30.0-kg crate a distance of 4.5 m along a level floor at constant velocity by pushing horizontally on

it. The coefficient of kinetic friction between the crate and the floor is 0.25. (a) What magnitude of force must the worker apply? (b) How much work is done on the crate by this force? (c) How much work is done on the crate by friction? (d) How much work is done on the crate by the normal force? By gravity? (e) What is the total work done on the crate?
Physics
1 answer:
SIZIF [17.4K]3 years ago
5 0

(a) 73.5 N

The velocity of the crate is constant: this means that the acceleration is zero (a=0), so according to Newton's second law

\sum F = ma

the resultant of the forces must be zero: \sum F = 0 (1)

The motion is along the horizontal direction, so we are only interested in the forces acting along this direction. There are two of them:

F, the push applied by the worker

F_f=-\mu mg, the force of friction, with \mu=0.25 being the coefficient of friction, m=30.0 kg being the mass of the crate, and g=9.8 m/s^2. The negative sign is due to the fact that the friction acts in the opposite direction to the motion. Eq.(1) then becomes

F-\mu mg=0\\F=\mu mg=(0.25)(30.0 kg)(9.8 m/s^2)=73.5 N

So, this is the force that the worker must apply.

(b) 330.8 J

The work done by the pushing force of the worker on the crate is given by:

W=Fd cos \theta

where

F = 73.5 N is the force

d = 4.5 m is the displacement

\theta=0^{\circ} is the angle between the direction of the force and the displacement (0 degrees, since they are in same direction)

Substituting, we have

W=(73.5 N)(4.5 m)(cos 0^{\circ})=330.8 J

(c) -330.8 J

To calculate the work done by friction, we apply the same formula:

W=F_f d cos \theta

where

F_f = \mu mg=(0.25)(30.0 kg)(9.8 m/s^2)=73.5 N is the magnitude of the force of friction

d = 4.5 m is the displacement

\theta=180^{\circ} is the angle between the direction of the force of friction and the displacement (it is 180 degrees since the two are into opposite directions)

Substituting, we find

W=(73.5 N)(4.5 m)(cos 180^{\circ})=-330.8 J

So, the work done by friction is negative.

(d) 0 J

As before, the work done by any force on the crate is

W=F_f d cos \theta

We notice that both gravity and normal force are perpendicular to the displacement: therefore, \theta=90^{circ}, and so

cos \theta=0

which means that the work done by both forces is zero.

(e) 0 J

The total work done on the crate is the sum of the work done by the four forces acting on it, so:

W=W_{push} + W_{friction}+W_{gravity}+W_{normal}=330.8J-330.8J+0+0=0

And this is in accordance with the work-energy theorem, which states that the variation of kinetic energy of the crate is equal to the work done on it: since the crate is moving at constant velocity, its variation of kinetic energy is zero, as well as the work done on it.

You might be interested in
How old is donald trumpp------ i NEED answer .
professor190 [17]
Donald trump is 74 years old
7 0
3 years ago
A crate remains stationary after it has been placed on a ramp inclined at an angle with the horizontal. Which of the following s
Ganezh [65]

Answer:

d. It is equal to the component of the gravitational force acting down the ramp.

Explanation:

The stationary crate is inclined at an angle with the horizontal. The Recall, Frictional Force is any Force that opposes motion.

Because the Force of Friction that is opposing the motion of the crate along the inclination side.

Therefore this Frictional force is balanced or equal to the force that is driving the inclined force.

Hence Frictional Force is equal to the Gravitational Force that is acting in the ramp, that is why the crate is stationery.

8 0
3 years ago
The central star of a planetary nebula emits ultraviolet light with wavelength 104nm. This light passes through a diffraction gr
Gala2k [10]

Answer: 31.33 degrees

Explanation:

The diffraction angles \theta_{n} when we have a slit divided into n parts are obtained by  the following equation:

dsin\theta_{n}=n\lambda   (1)

Where:

d is the width of the slit

\lambda  is the wavelength of the light

n is an integer different from zero.

Now, the first-order diffraction angle is given when n=1, hence equation (1) becomes:

dsin\theta_{1}=\lambda   (2)

Now we have to find the value of \theta_{1}:

sin\theta_{1}=\frac{\lambda}{d}  

\theta_{1}=arcsin(\frac{\lambda}{d})   (3)

We know:

\lambda=104nm=104(10)^{-9}m

In addition we are told the diffraction grating has 5000 slits per mm, this means:

d=\frac{1mm}{5000}=\frac{1(10)^{-3}m}{5000}

Substituting the known values in (3):

\theta_{1}=arcsin(\frac{104(10)^{-9}m}{\frac{1(10)^{-3}m}{5000}})

\theta_{1}=arcsin(0.52)

<u>Finally:</u>

\theta_{1}=31.33\º >>>This is the first-order diffraction angle

4 0
3 years ago
Based on illustrations of magnetic field lines, where could an object be placed so it would not experience a magnetic force
tiny-mole [99]

<u>Halfway</u><u> between the like poles of two magnets, because the field lines bend away and do not enter this area.</u>

How does a magnetic field diagram show where the field is strongest?

  • The magnetic field lines do not ever cross.
  • The lines include arrowheads to indicate the direction of the force exerted by a magnetic north pole.
  • The closer the lines are to the poles, the stronger the magnetic field (thus the magnetic field from a bar magnet is highest closest to the poles).

Where is magnetic field the strongest and weakest on a magnet?

  • The bar magnet's magnetic field is strongest at its core and weakest between its two poles.
  • The magnetic field lines are densest immediately outside the bar magnet and least dense in the core.

Which two locations on the magnet would have the greatest attractive forces?

  • Inside the magnet itself, the field lines run from the south pole to the north pole.
  • The magnetic field is strongest in areas of greatest density of magnetic field lines, or areas of the greatest magnetic flux density.

Learn more about magnetic field

brainly.com/question/11514007

#SPJ4

4 0
2 years ago
I need help i don’t want to go to summer school
Sonbull [250]

Answer:

makes you hungry is not a science based benefit of meditation

7 0
3 years ago
Other questions:
  • Which one of the following accurately pairs the device with its function?
    6·2 answers
  • If an object's kinetic energy is zero, what is its momentum?
    13·1 answer
  • Create a group of 3-4 students. Using your cell phone flashlight and the filter, create a "blue" flashlight, "red" flashlight, a
    14·1 answer
  • The engine on a fighter airplane can exert a force of 105,840 N (24,000 pounds). The take-off mass of the plane is 16,875 kg. (I
    8·1 answer
  • a driver brings a car to a full stop in 2.0 s. if the car was initially traveling at 22 m/s, what is the acceleration?
    9·1 answer
  • Describe how two isotopes of nitrogen differ from two nitrogen ions?
    8·1 answer
  • An electric saw uses a circular spinning blade to slice through wood. When you start the saw, the motor needs 2.00 seconds of co
    12·1 answer
  • Mbbnmzmzkdjhxhxndmfmfmckcjcjcncncngmgkgjcjcj
    15·2 answers
  • Which is an example of a mixture?
    10·2 answers
  • 12,3,14,10,13,8 step 3 of 3 : determine if the data set is unimodal, bimodal, multimodal, or has no mode. identify the mode(s),
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!