a. I've attached a plot of the surface. Each face is parameterized by
• with and ;
• with and ;
• with and ;
• with and ; and
• with and .
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.
Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.
c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.
where <em>R</em> is the interior of <em>S</em>. We have
The integral is easily computed in cylindrical coordinates:
as expected.
Answer:
The answer to your question is:
Explanation:
There are two kinds of cell transport passive transportation and active transportation.
Passive transportation does not need energy because molecules move from higher concentration to lower concentration.
Active transportation needs energy because molecules moves against concentration.
a. facilitated diffusion It's an example of passive transportation so this answer is wrong.
b. passive transport Molecules move in favor of concentration so this answer is wrong.
c. osmosis is another example of passive transport so this answer is wrong.
d. simple diffusion it's another example of passive transport, so it's wrong this answer.
e. active transport this is the right answer.
Answer:
<u>Facts about 258</u>
<u>Sig Figs</u>
3
<u>258</u>
<u>Decimals</u>
0
<u>Scientific Notation</u>
2.58 × 102
<u>E-Notation</u>
2.58e+2
<u>Words</u>
two hundred fifty-eight
Explanation:
258 Rounded to Fewer Sig Figs
2 260 2.6 × 102
1 300 3 × 102
smaller, because the part of the velocities cancel each other out