The symbol %v/v means percent by volume. Assuming there is no volume effects when these substances are mixed, we calculate as follows:
% v/v = (25 mL ethanol / 25 mL + 150 mL ) x 100
%v/v = 14.29 mL ethanol / mL solution
Hope this answers the question.
Assume 1 liter = 1 kilogram of water = 1000 grams of water.
Part A)
MW of hydrogen is 1.008g/mol, and oxygen is 16.00g/mol.
Find the MW of water by
2*(1.008) + (16.00) = 18.016g/mol.
Convert 1000g H2O to moles :
(1000g H2O)*(1mol H2O / 18.016g H2O) = 55.51 mol
Part B)
Using the answer from part A and Avogadro's number:
(55.51mol)*(6.022*10^23) =
3.343*10^25 molecules.
Hope this is helpful
A. the density stays the same unless given an external catalyst
Answer:
The oxidation state of the carbon is +4.
Explanation:
Calcium is in group 2 of the periodic table, therefore, its oxidation state is +2.
The oxidation state of the oxygen is -2.
As the compound is neutral, the sum of the oxidation states of all atoms must be 0.
Oxidation State Ca + Oxidation State C + (Oxidation State O)×3 = 0
+2 + x + (-2)×3 = 0
2 + x - 6 = 0
x = 6 -2
x = 4
Hence, the oxidation state of the carbon is +4.
Below are the choices:
<span>A. Ni(CO)4(g) ⇌ Ni(s) + 4CO(g)
B. C(s) +2H2(g) ⇌ CH4(g)
C. CaCO3(s) ⇌ CaO(s) + CO2(g)
D. N2(g) + O2(g) ⇌ 2 NO(g)
</span>
The answer is A. Ni(CO)4(g) ⇌ Ni(s) + 4CO(g)
<span>The Kp/Kc ratio is equal to (RT)Δn. K is a constant and the temperature is held constant. So, the Kp/Kc ratio depends on Δn or the difference of moles of gaseous product and reactant. The reaction with the greatest Kp/Kc ratio is Ni(CO)4(g) ⇌ Ni(s) + 4CO(g) with a Δn of 3.</span>