Answer:
![r=K A^{1/5} \rho^{-1/5} t^{2/5}](https://tex.z-dn.net/?f=%20r%3DK%20A%5E%7B1%2F5%7D%20%5Crho%5E%7B-1%2F5%7D%20t%5E%7B2%2F5%7D)
![A= \frac{r^5 \rho}{t^2}](https://tex.z-dn.net/?f=A%3D%20%5Cfrac%7Br%5E5%20%5Crho%7D%7Bt%5E2%7D)
![A=1.033x10^{21} ergs *\frac{Kg TNT}{4x10^{10} erg}=2.58x10^{10} Kg TNT](https://tex.z-dn.net/?f=A%3D1.033x10%5E%7B21%7D%20ergs%20%2A%5Cfrac%7BKg%20TNT%7D%7B4x10%5E%7B10%7D%20erg%7D%3D2.58x10%5E%7B10%7D%20Kg%20TNT)
Explanation:
Notation
In order to do the dimensional analysis we need to take in count that we need to conditions:
a) The energy A is released in a small place
b) The shock follows a spherical pattern
We can assume that the size of the explosion r is a function of the time t, and depends of A (energy), the time (t) and the density of the air is constant
.
And now we can solve the dimensional problem. We assume that L is for the distance T for the time and M for the mass.
[r]=L with r representing the radius
[A]=
A represent the energy and is defined as the mass times the velocity square, and the velocity is defined as ![\frac{L}{T}](https://tex.z-dn.net/?f=%5Cfrac%7BL%7D%7BT%7D)
[t]=T represent the time
represent the density.
Solution to the problem
And if we analyze the function for r we got this:
![[r]=L=[A]^x [\rho]^y [t]^z](https://tex.z-dn.net/?f=%5Br%5D%3DL%3D%5BA%5D%5Ex%20%5B%5Crho%5D%5Ey%20%5Bt%5D%5Ez%20)
And if we replpace the formulas for each on we got:
![[r]=L =(\frac{ML^2}{T^2})^x (\frac{M}{L^3})^y (T)^z](https://tex.z-dn.net/?f=%5Br%5D%3DL%20%3D%28%5Cfrac%7BML%5E2%7D%7BT%5E2%7D%29%5Ex%20%28%5Cfrac%7BM%7D%7BL%5E3%7D%29%5Ey%20%28T%29%5Ez%20)
And using algebra properties we can express this like that:
![[r]=L=M^{x+y} L^{2x-3y} T^{-2x+z}](https://tex.z-dn.net/?f=%5Br%5D%3DL%3DM%5E%7Bx%2By%7D%20L%5E%7B2x-3y%7D%20T%5E%7B-2x%2Bz%7D)
And on this case we can use the exponents to solve the values of x, y and z. We have the following system.
![x+y =0 , 2x-3y=1, -2x+z=0](https://tex.z-dn.net/?f=%20x%2By%20%3D0%20%2C%202x-3y%3D1%2C%20-2x%2Bz%3D0)
We can solve for x like this x=-y and replacing into quation 2 we got:
![2(-y)-3y = 1](https://tex.z-dn.net/?f=%202%28-y%29-3y%20%3D%201)
![-5y = 1](https://tex.z-dn.net/?f=-5y%20%3D%201)
![y= -\frac{1}{5}](https://tex.z-dn.net/?f=y%3D%20-%5Cfrac%7B1%7D%7B5%7D)
And then we can solve for x and we got:
![x = -y = -(-\frac{1}{5})=\frac{1}{5}](https://tex.z-dn.net/?f=x%20%3D%20-y%20%3D%20-%28-%5Cfrac%7B1%7D%7B5%7D%29%3D%5Cfrac%7B1%7D%7B5%7D)
And if we solve for z we got:
![z=2x =2 \frac{1}{5}=\frac{2}{5}](https://tex.z-dn.net/?f=z%3D2x%20%3D2%20%5Cfrac%7B1%7D%7B5%7D%3D%5Cfrac%7B2%7D%7B5%7D)
And now we can express the radius in terms of the dimensional analysis like this:
![r=K A^{1/5} \rho^{-1/5} t^{2/5}](https://tex.z-dn.net/?f=%20r%3DK%20A%5E%7B1%2F5%7D%20%5Crho%5E%7B-1%2F5%7D%20t%5E%7B2%2F5%7D)
And K represent a constant in order to make the porportional relation and equality.
The problem says that we can assume the constant K=1.
And if we solve for the energy we got:
![A^{1/5}=\frac{r}{t^{2/5} \rho^{-1/5}}](https://tex.z-dn.net/?f=A%5E%7B1%2F5%7D%3D%5Cfrac%7Br%7D%7Bt%5E%7B2%2F5%7D%20%5Crho%5E%7B-1%2F5%7D%7D)
![A= \frac{r^5 \rho}{t^2}](https://tex.z-dn.net/?f=A%3D%20%5Cfrac%7Br%5E5%20%5Crho%7D%7Bt%5E2%7D)
And now we can replace the values given. On this case t =0.025 s, the radius r =140 m, and the density is a constant assumed
, and replacing we got:
![A=\frac{140^5 1.2 kg/m^3}{(0.025 s)^2}=1.033x10^{14} \frac{kg m^2}{s^2}](https://tex.z-dn.net/?f=%20A%3D%5Cfrac%7B140%5E5%201.2%20kg%2Fm%5E3%7D%7B%280.025%20s%29%5E2%7D%3D1.033x10%5E%7B14%7D%20%5Cfrac%7Bkg%20m%5E2%7D%7Bs%5E2%7D)
And we can convert this into ergs we got:
![A= 1.033x10^{14} \frac{kgm^2}{s^2} * \frac{1 x10^7 egrs}{1 \frac{kgm^2}{s^2}}=1.033x10^{21} ergs](https://tex.z-dn.net/?f=%20A%3D%201.033x10%5E%7B14%7D%20%5Cfrac%7Bkgm%5E2%7D%7Bs%5E2%7D%20%2A%20%5Cfrac%7B1%20x10%5E7%20egrs%7D%7B1%20%5Cfrac%7Bkgm%5E2%7D%7Bs%5E2%7D%7D%3D1.033x10%5E%7B21%7D%20ergs)
And then we know that 1 g of TNT have ![4x10^4 erg](https://tex.z-dn.net/?f=4x10%5E4%20erg)
And we got:
![A=1.033x10^{21} ergs *\frac{Kg TNT}{4x10^{10} erg}=2.58x10^{10} Kg TNT](https://tex.z-dn.net/?f=A%3D1.033x10%5E%7B21%7D%20ergs%20%2A%5Cfrac%7BKg%20TNT%7D%7B4x10%5E%7B10%7D%20erg%7D%3D2.58x10%5E%7B10%7D%20Kg%20TNT)