1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
2 years ago
15

Can anyone help? Due tomorrow!!

Physics
1 answer:
zvonat [6]2 years ago
7 0
Different:
1. number of moons
2. size of rings
3. mass
4. temperature
5. type of rings

i might be wrong though.
You might be interested in
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to o
Pachacha [2.7K]

(a) 0.448

The gravitational potential energy of a satellite in orbit is given by:

U=-\frac{GMm}{r}

where

G is the gravitational constant

M is the Earth's mass

m is the satellite's mass

r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):

r = R + h

We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

\frac{U_B}{U_A}=\frac{-\frac{GMm}{R+h_B}}{-\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

and so, substituting:

R=6370 km\\h_A = 5970 km\\h_B = 21200 km

We find

\frac{U_B}{U_A}=\frac{6370 km+5970 km}{6370 km+21200 km}=0.448

(b) 0.448

The kinetic energy of a satellite in orbit around the Earth is given by

K=\frac{1}{2}\frac{GMm}{r}

So, the ratio between the two kinetic energies is

\frac{K_B}{K_A}=\frac{\frac{1}{2}\frac{GMm}{R+h_B}}{\frac{1}{2}\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.

(c) B

The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

E=U+K=-\frac{GMm}{R+h}+\frac{1}{2}\frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}

For satellite A, we have

E_A=-\frac{1}{2}\frac{GMm}{R+h_A}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+5.97\cdot 10^6 m}=-4.65\cdot 10^8 J

For satellite B, we have

E_B=-\frac{1}{2}\frac{GMm}{R+h_B}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+21.2\cdot 10^6 m}=-2.08\cdot 10^8 J

So, satellite B has the greater total energy (since the energy is negative).

(d) -2.57\cdot 10^8 J

The difference between the energy of the two satellites is:

E_B-E_A=-2.08\cdot 10^8 J-(-4.65\cdot 10^8 J)=-2.57\cdot 10^8 J

4 0
3 years ago
Two balls, each with a mass of 0.890 kg, exert a gravitational force of 8.06 × 10−11 n on each other. how far apart are the ball
Bond [772]
This problem involves Newton's universal law of gravitation and the equation to follow would be.

F = GM₁M₂/r²  

Given: M₁ = 0.890 Kg;  M₂ = 0.890 Kg;  F = 8.06 x 10⁻¹¹ N; G = 6.673 X 10⁻¹¹ N m²/Kg²

Solving for distance r = ?

r = √GM₁M₂/F

r = √(6.673 x 10⁻¹¹ N m₂/Kg²)(0.890 Kg)(0.890 Kg)/ 8.06 x 10⁻¹¹ N

r = 0.81 m 
6 0
3 years ago
Meg walks with a velocity of 0.9 m/s west. She does so while riding on a train that is traveling with a velocity of 2.7 m/s east
Shkiper50 [21]
<span>Velocities are vectors so we can add them!

Let's let +x be East and -x be West.

 -0.9 + 2.7 = 1.8
 
Since our answer is positive that means East so the answer is C.</span>
6 0
3 years ago
Say you want to make a sling by swinging a mass M of 1.9 kg in a horizontal circle of radius 0.042 m, using a string of length 0
padilas [110]

Answer: T= 715 N

Explanation:

The only external force (neglecting gravity) acting on the swinging mass, is the centripetal force, which. in this case, is represented by the tension in the string, so we can say:

T = mv² / r

At the moment that the mass be released, it wil continue moving in a straight line at the same tangential speed that it had just an instant before, which is the same speed included in the centripetal force expression.

So the kinetic energy will be the following:

K = 1/2 m v² = 15. 0 J

Solving for v², and replacing in the expression for T:

T = 1.9 Kg (3.97)² m²/s² / 0.042 m = 715 N

3 0
3 years ago
6. To which of these abrasive disks can you
laila [671]

Answer: its B

Explanation:

7 0
2 years ago
Other questions:
  • A squirrel (mass 0.9 kg) is running across the road at a speed 4.0 m/s. What is the
    7·2 answers
  • Uranium-238 eventually decays into
    10·1 answer
  • Two long parallel wires carry currents of 3.35 A and 6.99 A . The magnitude of the force per unit length acting on each wire is
    15·2 answers
  • Two small masses that are 10.0 cm apart attract each other with a force of 10.0 N. When they are 5.0 cm apart, these masses will
    11·1 answer
  • The earth's magnetic field deflects the flow of current from?
    11·1 answer
  • A mass of 267 g is attached to a spring and set into simple harmonic motion with a period of 0.176 s. If the total energy of the
    9·1 answer
  • In a bag there are 18 pink jellybeans, 22 purple jellybeans, 10 orange jellybeans, and 20 red jellybeans what is the probability
    15·1 answer
  • a effort of 100n can raise a load of 2000n in a hydraulic press. calculate the cross-sectional area of a small piston in it. The
    5·1 answer
  • According to the Law of Conservation of Energy, why does the first hill on a roller coaster always have to be the tallest of all
    12·1 answer
  • I need help 8th grade science test review will give brainest
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!