Answer:
Explanation:
Work done = ∫Fdx
= ∫(cx-3.00x²) dx
[ c x² / 2 - 3 x³ / 3 ]₀²
= change in kinetic energy
= 11-20
= - 9 J
[ c x² / 2 - x³ ]₀² = - 9
c x 2² / 2 - 2³ = -9
2c - 8 = -9
2c = -1
c = - 1/2
Answer:
a) = 258352.5J
b) = 23.63 m/s
c) = 1.8m
Explanation:
Data;
Mass = 925kg
Distance (s) = 28.5m
Force constant (k) = 8.0*10⁴ N/m
g = 9.8 m/s²
a) = work = force * distance
But force = mass * acceleration
Force = 925 * 9.8 = 9065N
Work = F * s = 9065 * 28.5 = 258352.5J
b) acceleration (a) = (v² - u²) / 2s
a = v² / 2s
v² = a * 2s
v² = 9.8 * (2 * 28.5)
v² = 9.8 * 57
v² = 558.6
v = √(558.6)
V = 23.63 m/s
C). The work stops when the work done to raise the spring equals the work done to stop it by the spring
W = ½kx²
258352.5 = ½ * 8.0*10⁴ * x²
(2 * 258352.5) = 8.0*10⁴x²
516705 = 8.0*10⁴x²
X² = 516705 / 8.0*10⁴
X² = 6.46
X = √(6.46)
X = 2.54m
The compression was about 2.54m
<h2>Greetings!</h2>
To find this value, you need to remember the speed formula:
3 = 6 / 2
Speed = distance ÷ time
Rearrange to make distance the subject:
Distance = speed * time
Simply plug these values into this:
5.6 * 8.25 = 46.2
<h3>So the player will travel 46.2 metres!</h3>
<h2>Hope this helps!</h2>
The force of gravity F_g will act downwards.
Normal force F_N will act upwards equal to the force of gravity.
A force due to uniform acceleration F_a will act upwards to move the elevator upwards.
Thus, figure E is the correct answer.
Answer:
A)take motion and induce a current
Explanation:
i hope it will be helpful