If the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
Doppler effect states that, if a person is standing still and a source ( sound / light ) is moving towards him, the frequency of the wave emitted from the object will increase and if the source ( sound / light ) is away from him, the frequency of the wave emitted from the object will decrease.
So, if the light from the sun has higher frequencies from one side of the sun than from the other side, it means that the Sun is rotating. The higher frequencies points are the points that rotating towards Earth and lower frequencies points are the points that rotating away from Earth.
Therefore, if the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
To know more about Doppler Effect
brainly.com/question/15318474
#SPJ1
Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.

Answer:
let m be the mass of the object, K be the force constant and Fs be the force by the spring on the mass.
The question is asking to calculate the tension that the string has to adjust the string so that when vibrating in its second overtone, it produces sound of wavelength of 0.761m, base on my calculation, the calculation must be done by the formula of <span>v=λf</span><span>., I hope this would help </span>
A., 101.7 km/h is the correct answer for this question