Answer:
The frictional force needed to overcome the cart is 4.83N
Explanation:
The frictional force can be obtained using the following formula:

where
is the coefficient of friction = 0.02
R = Normal reaction of the load =
=
= 
Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F = 4.83 N
Hence, the frictional force needed to overcome the cart is 4.83N
Answer:
Vertical component of velocity is 9.29 m/s
Explanation:
Given that,
Velocity of projection of a projectile, v = 22 m/s
It is fired at an angle of 22°
The horizontal component of velocity is v cosθ
The vertical component of velocity is v sinθ
So, vertical component is given by :



Hence, the vertical component of the velocity is 9.29 m/s
Explanation:
The total energy of an aircraft flying in the atmosphere can be calculated using equation 1. [2]
E = ½ m v2 + mgh
A Boeing 737-300 has a maximum takeoff weight of 5.65 × 104 kg, a cruise altitude of h = 10,195 m, and cruise speed of 221 m/sec. Inserting these numbers into the above equation, we obtain 7.03 GJ for the energy at cruise conditions. [3] However, the engines mounted onto the wings of the plane are required to provide additional energy per time, power, in order to keep the aircraft flying at a constant altitude and speed
Work is the energy needed to apply a force to move an object a particular distance, where force is parallel to the displacement. Power is the rate at which that work is done.
Answer:
a) k = 120 N / m
, b) f = 0.851 Hz
, c) v = 1,069 m / s
, d) x = 0
, e) a = 5.71 m / s²
, f) x = 0.200 m
, g) Em = 2.4 J
, h) v = -1.01 m / s
Explanation:
a) Hooke's law is
F = k x
k = F / x
k = 24.0 / 0.200
k = 120 N / m
b) the angular velocity of the simple harmonic movement is
w = √ k / m
w = √ (120 / 4.2)
w = 5,345 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 5.345 / 2π
f = 0.851 Hz
c) the equation that describes the movement is
x = A cos (wt + Ф)
As the body is released without initial velocity, Ф = 0
x = 0.2 cos wt
Speed is
v = dx / dt
v = -A w sin wt
The speed is maximum for sin wt = ±1
v = A w
v = 0.200 5.345
v = 1,069 m / s
d) when the function sin wt = -1 the function cos wt = 0, whereby the position for maximum speed is
x = A cos wt = 0
x = 0
e) the acceleration is
a = d²x / dt² = dv / dt
a = - Aw² cos wt
The acceleration is maximum when cos wt = ± 1
a = A w²
a = 0.2 5.345
a = 5.71 m / s²
f) the position for this acceleration is
x = A cos wt
x = A
x = 0.200 m
g) Mechanical energy is
Em = ½ k A²
Em = ½ 120 0.2²
Em = 2.4 J
h) the position is
x = 1/3 A
Let's calculate the time to reach this point
x = A cos wt
1/3 A = A cos 5.345t
t = 1 / w cos⁻¹(1/3)
The angles are in radians
t = 1.23 / 5,345
t = 0.2301 s
Speed is
v = -A w sin wt
v = -0.2 5.345 sin (5.345 0.2301)
v = -1.01 m / s
i) acceleration
a = -A w² sin wt
a = - 0.2 5.345² cos (5.345 0.2301)
a = -1.91 m / s²
Answer:
rightwards is the positive velocity
Rightwards is the positive elicitation: