Answer:
Θ
Θ
Θ = 
Explanation:
Applying the law of conservation of momentum, we have:
Δ

Θ (Equation 1)
Δ

Θ (Equation 2)
From Equation 1:
Θ
From Equation 2:
sinΘ = 

Replacing Equation 3 in Equation 4:


Θ (Equation 5)
And we found Θ from the Equation 5:
tanΘ=
Θ=
Answer:
v = 7.67 m/s for L= 1m
Explanation:
Let's use the conservation of mechanical energy, at the highest point and the lowest point
Initial. Vertical ruler
Em₀ = mg h
Final. Just before touching the floor
= K = ½ I w²
Em₀ = 
m g h = ½ I w²
The moment of inertia of a ruler that turns on one end is
I = 1/3 m L²
Let's replace
m g h = ½ (1/3 m L²) w²2
g h = 1/6 L² w²
They ask for the speed of the end so the height h is equal to the length of the ruler
g L = 1/6 L² w²
The linear and angular variables are related
v = w r
w = v / r
In this case the point of interest a in strangers r = L
g L = 1/6 L² v² / L²
v = √ 6 g L
Let's calculate
Assume that the length of the meter is L = 1 m
v = √ (6 9.8 1)
v = 7.67 m/s
While Jane is running has a kinetic energy, which is Ek = 1/2*m*v^2 where m is mass and v is velocity When she grabs a vine, she is going to change the kinetic energy to potential energy.
We know that potential energy is given by Ep = m*g*h where m is mass, g is gravity constant and h is height
So while running the kinetic energy is Ek = 1/2 * m * 5.2^2 = 13.52*m
Then all that energy is used to swing upward and gain potential energy
Ep = m*g*h = Ek = 13.52*m
m*9.8*h = 13.52*m
h = 13.52/9.8 = 1.38 meters
So Jane will swing 1.38 meters upward
Answer:
An attraction between two objects that have mass :)
Answer:
No cheating: you’re starring in a movie w/ the last person saved in your camera roll and the last song you listened to is the title.
"let's go everywhere" the movie with taemin and taeyong sounds like something i would watch ♡ https://t.co/tGdUt7CKPc