Answer:
- The emf of the generator is 6V
- The internal resistance of the generator is 1 Ω
Explanation:
Given;
terminal voltage, V = 5.7 V, when the current, I = 0.3 A
terminal voltage, V = 5.1 V, when the current, I = 0.9 A
The emf of the generator is calculated as;
E = V + Ir
where;
E is the emf of the generator
r is the internal resistance
First case:
E = 5.7 + 0.3r -------- (1)
Second case:
E = 5.1 + 0.9r -------- (2)
Since the emf E, is constant in both equations, we will have the following;
5.1 + 0.9r = 5.7 + 0.3r
collect similar terms together;
0.9r - 0.3r = 5.7 - 5.1
0.6r = 0.6
r = 0.6/0.6
r = 1 Ω
Now, determine the emf of the generator;
E = V + Ir
E = 5.1 + 0.9x1
E = 5.1 + 0.9
E = 6 V
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
When your hand hits the table the table will vibrate and your hand will be numb for two to three seconds
<span>Let equation A be
h=ut+<span>12</span>g<span>t2 </span></span>
for 1st stone:
<span>h=<span>12</span> g<span>t2
</span></span>eq.-(A)
for 2nd stone:
<span>h=32m/s(t−1.6s)+<span>12</span>g(t−1.6s<span>)2
</span></span><span>h=32m/s∗t−51.5m+<span>12</span>g<span>t2</span>+12.544m−15.68m/s∗t
</span>
<span>h=16.32m/s∗t+h−38.656m
</span>
<span>t=2.3686s
</span>
now putting the value of t in eqn. A
<span><span>h=27.49m</span></span>
Radio waves have the lowest radiant energy, hope this helps :]