Answer:
C and D
Explanation:
But really, You should be able to answer this with the tech knowledge of a tomato. You're given four answers, and are to choose which two are explain the reliability of digital storage.
The first two describe bad nasty things, the second two describe beneficial things.
So logically....
Answer:
option A is correct because air friction is greater than gravity
Explanation:
hii i am boŕed wanna some fun on zòom
816 3823 4736
227UHQ
The acceleration is the correct answer
I'll go ahead and answer the ones here without an answer. For reference, the half-life formula is <em>final amount = original amount(1/2)^(time/half-life)</em>
<em />
4) 12.5g
x = 100(1/2)^(63/21)
5) 50g
3.125 = x(1/2)^(0.1/0.025)
6) 500g
x = 4000(1/2)^(525/175)
7) 0.24g
0.06 = x(1/2)^(11430/5730)
8) 125g
x = 1000(1/2)^(17100/5700)
Hope this helps! :)
Hello!
This is an example of an inelastic collision, where the two objects "stick" to each other after their collision. (The Goalkeeper CATCHES the puck).
We can write out the conservation of momentum formula:
m1vi + m2vi = m1vf + m2vf
Let:
m1 = mass of puck
m2 = mass of the goalkeeper
We know that the initial velocity of the goalkeeper is 0, so:
m1vi + m2(0) = m1vf + m2vf
m1vi = m1vf + m2vf
The final velocities will be the same, so:
m1vi = (m1 + m2)vf
Plug in the given values:
(0.16)(40)/ (0.16 + 120) = vf ≈ 0.0533 m/s
Using the equation for momentum:
p = mv
The object with the LARGER mass will have the greater momentum. Thus, the Goalkeeper has the largest momentum as p = mv; a greater mass correlates to a greater momentum since the velocity is the same between the two objects. The puck would have a momentum of p = (.16)(0.0533) = 0.008528 kgm/s, whereas the goalkeeper would have a momentum of
p = (120)(0.0533) = 6.396 kgm/s.