This problem is providing us with the molality of a solution of calcium iodide as 0.01 m. So the most likely van't Hoff factor is required and theoretically found to be 3 due to the following:
<h3>Van't Hoff factor:</h3>
In chemistry, the correct characterization of solutions also imply the identification of the ions it will release in aqueous solution. For that reason, the van't Hoff factor gives us an idea of this number, according to the formula the solute has got.
In such a way, for calcium iodide, we write its ionization equation as shown below:

Assuming it is able to ionize due to the low molality, because if it was higher, then it won't ionize. Hence, since we have three moles of ion products, one Ca²⁺ and two I⁻, we can conclude the van't Hoff factor would be 3, although calculations may lead to a different, yet close result.
Learn more about the van't Hoff factor: brainly.com/question/23764376
Answer:
keep adding to on each term its quit simple
Its an inelastic collision because the force from the bat causes it to bounce back. It is also an elastic force because catching the ball call for the energy of the ball to be deformed and restored into the mitt.
Answer:
Lewis structure for isomers of butane has been given below.
Explanation:
Butane is a saturated alkane with molecular formula
. Due to different positing of methyl groups, positional isomerism exists in butane.
Butane has two positional isomers with same molecular formula. One is n-butane and another one is isobutane. Lewis structures of these two isomers have been given below.
A) 2, 3 , 2 simply valence the rest