The correct answer is
<span>B) UV waves are higher frequency and carry more energy.
In fact, UV waves have higher frequency than visible light. For comparison, visible light has frequency in the range 430-770 THz (</span>

)<span>, while ultraviolets (UV) have frequency higher than these values (at the order of 1 PHz, </span>

).
The energy of electromagnetic radiation is proportional to its frequency, according to the equation

where h is the Planck constant and f is the frequency. We see that the higher the frequency, the greater the energy, so UV waves carry more energy than visible light.
Answer:
El aumento de tensión alarga la longitud de onda, reduce la amplitud, aumenta la frecuencia y, por lo tanto, aumenta la velocidad. (GOOGLE)
Answer:
a) E = 8628.23 N/C
b) E = 7489.785 N/C
Explanation:
a) Given
R = 5.00 cm = 0.05 m
Q = 3.00 nC = 3*10⁻⁹ C
ε₀ = 8.854*10⁻¹² C²/(N*m²)
r = 4.00 cm = 0.04 m
We can apply the equation
E = Qenc/(ε₀*A) (i)
where
Qenc = (Vr/V)*Q
If Vr = (4/3)*π*r³ and V = (4/3)*π*R³
Vr/V = ((4/3)*π*r³)/((4/3)*π*R³) = r³/R³
then
Qenc = (r³/R³)*Q = ((0.04 m)³/(0.05 m)³)*3*10⁻⁹ C = 1.536*10⁻⁹ C
We get A as follows
A = 4*π*r² = 4*π*(0.04 m)² = 0.02 m²
Using the equation (i)
E = (1.536*10⁻⁹ C)/(8.854*10⁻¹² C²/(N*m²)*0.02 m²)
E = 8628.23 N/C
b) We apply the equation
E = Q/(ε₀*A) (ii)
where
r = 0.06 m
A = 4*π*r² = 4*π*(0.06 m)² = 0.045 m²
Using the equation (ii)
E = (3*10⁻⁹ C)/(8.854*10⁻¹² C²/(N*m²)*0.045 m²)
E = 7489.785 N/C