Answer:
Let N = N0 where N0 is the number of atoms originally present.
In 6 days N = N0 / 2
In 12 days N = N0 / 4
In 18 days N = N0 / 8 = .125 N0
So it would take 18 days.
Answer:
2.17 Mpa
Explanation:
The location of neutral axis from the top will be

Moment of inertia from neutral axis will be given by 
Therefore, moment of inertia will be
![\frac {240\times 25^{3}}{12}+(240\times 25)\times (56.25-25/2)^{2}+2\times [\frac {20\times 150^{3}}{12}+(20\times 150)\times ((25+150/2)-56.25)^{2}]=34.5313\times 10^{6} mm^{4}}](https://tex.z-dn.net/?f=%5Cfrac%20%7B240%5Ctimes%2025%5E%7B3%7D%7D%7B12%7D%2B%28240%5Ctimes%2025%29%5Ctimes%20%2856.25-25%2F2%29%5E%7B2%7D%2B2%5Ctimes%20%5B%5Cfrac%20%7B20%5Ctimes%20150%5E%7B3%7D%7D%7B12%7D%2B%2820%5Ctimes%20150%29%5Ctimes%20%28%2825%2B150%2F2%29-56.25%29%5E%7B2%7D%5D%3D34.5313%5Ctimes%2010%5E%7B6%7D%20mm%5E%7B4%7D%7D)
Bending stress at top= 
Bending stress at bottom=
Mpa
Comparing the two stresses, the maximum stress occurs at the bottom and is 2.17 Mpa
<span>The de-acceleration or negative acceleration of stopping is what damages bones. The ground is rigid and therefore the change in momentum when striking the ground will be large. On the trampoline, the elasticity of the material means that the momentum changes more slowly, resulting in smaller accelerations.</span>
Answer:
B)The motion of water in an ocean current
Explanation:
With respect to measurements, a vector has both a magnitude and a direction. The first three examples (maximum height of a hill, air temperature, and rain accumulation) are magnitudes only. The fourth example (motion of water in an ocean current) is a vector, because it has a magnitude (speed) and a direction (with the current).