Answer:

Explanation:
The molar mass is the mass of a substance in grams per mole.
To find it, add the mass of each element in the compound. These masses can be found on the Periodic Table.
The compound given is:

The compound has 1 Ca (calcium) and 2 Cl (chlorine).
Mass of Calcium
- The molar mass of calcium is 40.08 g/mol
- There is only one atom of Calcium in CaCl₂, so the number above is what we will use.
Mass of Chlorine
- The molar mass of chlorine is 35.45 g/mol
- There are two atoms of chlorine in CaCl₂, therefore we need to multiply the molar mass by 2.
- 35.45 * 2= 70.9 g/mol
Molar Mass of CaCl₂
- Now, to find the molar mass, add the molar mass of 1 calcium and 2 chlorine.
- 40.08 g/mol + 70.9 g/mol =110.98 g/mol
The molar mass of CaCl₂ is <u>110.98 grams per mole. </u>
3. B
4. A
5.A
6. A (i think)
Hope this helps
Reducing acidity of chyme :Acidic chyme entering the duodenum stimulates the release of secretin from the small intestinal glands.
Answer:
D. 15g
Explanation:
The law of conservation of mass states that, in a chemical reaction, mass can neither be created nor destroyed. This means that the amount of matter in the elements of the reactants must be equal to the amount in the resulting products.
In this question, 25 grams of a reactant AB, was broken down in a reaction to produce 10 grams of products A and X grams of product B. According to the law of conservation of mass, the mass of the reactant must be equal to the total mass of the products. This means that 25 grams must also be the total mass of both products in this reaction. Hence, if product A is 10 grams, product B will be 25 grams - 10 grams = 15 grams.
Therefore, product B must be 15 grams in order to form a total of 25 grams when added to the mass of product A. This will equate the mass of the reactant AB and fulfill the law of conservation of mass.
B as the glass just changes form as it shattered but the chemical composition is same as it was before