Answer:
The correct answer is "Increased energy enables more particles to collide."
Explanation:
The reaction rate is defined as the change in the concentration of one of the reagents or products, in a time interval in which the change takes place.
For a chemical reaction to take place, the molecules of the reagents must collide, and must also collide effectively. In other words, these shocks must be produced with sufficient energy so that they can break and form chemical bonds. In the crash there must be proper orientation.
When increasing the temperature, the molecules will possess greater kinetic energy, which is that energy related to the movement of the molecules. Consequently, these molecules will move faster.Thus, the possibility of colliding with another molecule increases significantly. In this way, the reaction rate increases.
So, <u><em>the correct answer is "Increased energy enables more particles to collide."</em></u>
The periodic table contains groups and periods that include the elements. For group 1 metal lithium is least likely to lose an electron.
<h3>What are group 1 metals?</h3>
Group 1 metals are the alkali metals that include, Li, Na, K, Rb, and Cs. They show the property exhibited by the metals. The chemical trends of group 1 show that cesium loses an electron more easily than the other elements.
When going down the group the tendency to lose electrons increases as the atomic radius increases. The electron gets far away from the nucleus making it easy to get removed.
Therefore, lithium being the first element of the group has the smallest radii and is least likely to lose an electron.
Learn more about the group I metals here:
brainly.com/question/27187436
#SPJ4
They share the same number or protons
Answer: Option (d) is the correct answer.
Explanation:
It is known that length of a bond is inversely proportional to the bond strength. This also means that a single bond has long length due to which it is weak in nature.
And, a double bond is shorter in length and has more strength as compared to a single bond. Whereas a triple bond has the smallest length and it has high strength as compared to a double or single bond.
For example, carbon monoxide is CO where there is a triple bond between the carbon and oxygen atom.
Carbon dioxide is
where there exists a double bond between the carbon and oxygen atom.
A carbonate ion is
when two oxygen atoms are attached through single bond with the carbon atom and another oxygen atom is attached through a double bond to the carbon atom.
Hence, we can conclude that order of increasing bond strength of the given carbon oxygen bond is as follows.
Carbonate ion < carbon dioxide < carbon monoxide
We need to first come up with a balanced equation:
→ 
We know that the molar ratio of hydrogen to oxygen to water now is 4:1:2.
Converting the amount of grams given to moles is as follows:
Hydrogen: 
Oxygen: 
We know now that the limiting reactant is oxygen. We can then know that the number of moles of water are produced are double the number of moles of oxygen used due to the ratio that we established at the beginning - 4:1:2.
So we now can use 6.25 moles of water as the amount produced.
Then we convert moles of water to grams:

Now we know that there are 112.59g of water produced when we start with 50g of hydrogen and 50g of water.