<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>
Answer:
The maximum speed will be 26.475 m/sec
Explanation:
We have given mass of the toy m = 0.50 kg
radius of the light string r = 1 m
Tension on the string T = 350 N
We have to find the maximum speed without breaking the string
For without breaking the string tension must be equal to the centripetal force
So 
So 

v = 26.475 m /sec
So the maximum speed will be 26.475 m/sec
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
If an object that is 86kg on the moon then that is the answer, 86kg.
Answer:
when you tell someone over and over to stop bothering you and they dont so i think you should tell a teacher
Explanation: