What does a physical map show?
the names of countries, states, and cities
the history of an area
the geographical features of an area
the rest stops and restaurants in an area
Recall the definition of the cross product with respect to the unit vectors:
i × i = j × j = k × k = 0
i × j = k
j × k = i
k × i = j
and that the product is anticommutative, so that for any two vectors u and v, we have u × v = - (v × u). (This essentially takes care of part (b).)
Now, given a = 8i + j - 2k and b = 5i - 3j + k, we have
a × b = (8i + j - 2k) × (5i - 3j + k)
a × b = 40 (i × i) + 5 (j × i) - 10 (k × i)
… … … … - 24 (i × j) - 3 (j × j) + 6 (k × j)
… … … … + 8 (i × k) + (j × k) - 2 (k × k)
a × b = - 5 (i × j) - 10 (k × i) - 24 (i × j) - 6 (j × k) - 8 (k × i) + (j × k)
a × b = - 5k - 10j - 24k - 6i - 8j + i
a × b = -5i - 18j - 29k
A “real” image occurs when light rays actually intersect at the image, and become inverted, or turned upside down. ... In flat, or plane mirrors, the image is a virtual image, and is the same distance behind the mirror as the object is in front of the mirror. The image is also the same size as the object.
Answer:
1/3 the distance from the fulcrum
Explanation:
On a balanced seesaw, the torques around the fulcrum calculated on one side and on another side must be equal. This means that:

where
W1 is the weight of the boy
d1 is its distance from the fulcrum
W2 is the weight of his partner
d2 is the distance of the partner from the fulcrum
In this problem, we know that the boy is three times as heavy as his partner, so

If we substitute this into the equation, we find:

and by simplifying:

which means that the boy sits at 1/3 the distance from the fulcrum.
Answer:
The charge resides on the outer surface =
C
Explanation:
Surface area of cell 
Separation between two plate
Dielectric constant 
Potential difference 
The capacitance of parallel plate capacitor in free space is given by,

Where
permittivity of free space = 
The Capacitance of capacitor is increase by
times when it placed in dielectric medium.

And we know that, 
So charge on the outer surface is given by,


