Answer:
C 1:1
Explanation:
Hydrogen loses an electron to becone +1 which is a cation and flourine gains that electron to have a full outer shell on the 2p subshell to become -1 and is an anion so the ratio is 1:1.
I believe that the answer is ionic
360 mg / 1000 => 0.36 g
molar mass => 180 /mol
number of moles:
mass of solute / molar mass
0.36 / 180 => 0.002 moles
Volume solution = 200 mL / 1000 => 0.2 L
M = n / V
M = 0.002 / 0.2
M = 0.01 mol/L
hope this helps!
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl