Since the basketball and the tennis ball both travel to the same direction relative to the ground, the velocity of the basketball relative to the tennis ball is therefore the difference of their velocities.
0.5 m/s - 0.25 m/s = 0.25 m/s
Thus, the basketball travel for 0.25 m/s relative to the tennis ball.
Answer: Sanjay can burn 100 more calories every 30 minutes if he chooses to lift weights instead of watching tv
Explanation: 133-33= 100 calories (says in article and i just answered it)
Answer:
5 Days to Seconds = 432000
Explanation:
Answer:
Plane will 741.6959 m apart after 1.7 hour
Explanation:
We have given time = 1.7 hr
So if we draw the vectors of a 2d graph we see that the difference in angles is = 
Speed of first plane = 730 m/h
So distance traveled by first plane = 730×1.7 = 1241 m
Speed of second plane = 590 m/hr
So distance traveled by second plane = 590×1.7 = 1003 m
We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 58.6.
Using the law of cosine,
representing the distance between the planes, we see that:

r = 741.6959 m
Answer:
9.34 N
Explanation:
First of all, we can calculate the speed of the wave in the string. This is given by the wave equation:

where
f is the frequency of the wave
is the wavelength
For the waves in this string we have:
, since it completes 625 cycles per second
is the wavelength
So the speed of the wave is

The speed of the waves in a string is related to the tension in the string by
(1)
where
T is the tension in the string
is the linear density
In this problem:
is the mass of the string
L = 0.75 m is the its length
Solving the equation (1) for T, we find the tension:
