1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
3 years ago
13

A certain quantity of matter is called WHAT?

Chemistry
2 answers:
Lerok [7]3 years ago
6 0
A certain quantity of matter is called mass.
Ierofanga [76]3 years ago
5 0
A certain qaunity of matter could be Mass
You might be interested in
One method for determining the amount of corn in early Native American diets is the stable isotope ratio analysis (SIRA) techniq
frozen [14]

Answer:

a. i. 8.447 × 10⁻³ T ii.  27.14 cm

b. i. 2.14 cm ii. It is easily detectable.

Explanation:

a.

i. What strength of magnetic field is required?

Since the magnetic force F = Bqv equals the centripetal force F' = mv²/r on the C12 charge, we have

F = F'

Bqv = mv²/r

B = mv/re where B = strength of magnetic field, m = mass of C12 isotope = 1.99 × 10⁻²⁶ kg, v = speed of C 12 isotope = 8.50 km/s = 8.50 × 10³ m/s, q = charge on C 12 isotope = e = electron charge = 1.602 × 10⁻¹⁹ C (since the isotope loses one electron)and r = radius of semicircle = 25.0 cm/2 = 12.5 cm = 12.5 × 10⁻² m

So,

B = mv/rq

B = 1.99 × 10⁻²⁶ kg × 8.50 × 10³ m/s ÷ (12.5 × 10⁻² m × 1.602 × 10⁻¹⁹ C)

B = 16.915 × 10⁻²³ kgm/s ÷ (20.025 × 10⁻²¹ mC)

B = 0.8447 × 10⁻² kg/sC)

B = 8.447 × 10⁻³ T

(ii) What is the diameter of the 13C semicircle?

Since the magnetic force F = Bq'v equals the centripetal force F' = mv²/r' on the C13 charge, we have

F = F'

Bq'v = mv²/r'

r' = mv/Be where r = radius of semicircle, B = strength of magnetic field = 8.447 × 10⁻³ T, m = mass of C12 isotope = 2.16 × 10⁻²⁶ kg, v = speed of C 12 isotope = 8.50 km/s = 8.50 × 10³ m/s, q' = charge on C 13 isotope = e = electron charge = 1.602 × 10⁻¹⁹ C (since the isotope loses one electron) and  = d/2 = 12.5 cm = 12.5 × 10⁻² m

So, r' = mv/Be

r' = 2.16 × 10⁻²⁶ kg × 8.50 × 10³ m/s ÷ (8.447 × 10⁻³ T × 1.602 × 10⁻¹⁹ C)

r' = 18.36 × 10⁻²³ kgm/s ÷ 13.5321 × 10⁻²² TC)

r' = 1.357 × 10⁻¹ kgm/TC)

r' = 0.1357 m

r' = 13.57 cm

Since diameter d' = 2r', d' = 2(13.57 cm) = 27.14 cm

b.

i. What is the separation of the C12 and C13 ions at the detector at the end of the semicircle?

Since the diameter of the C12 isotope is 25.0 cm and that of the C 13 isotope is 27.14 cm, their separation at the end of the semicircle is 27.14 cm - 25.0 cm = 2.14 cm

ii. Is this distance large enough to be easily observed?

This distance of 2.14 cm easily detectable since it is in the centimeter range.

7 0
2 years ago
Consider the reaction Mg(s) + I2 (s) → MgI2 (s) Identify the limiting reagent in each of the reaction mixtures below:
Lapatulllka [165]

Answer:

a) Nor Mg, neither I2 is the limiting reactant.

b) I2 is the limiting reactant

c) <u>Mg is the limiting reactant</u>

<u>d) Mg is the limiting reactant</u>

<u>e) Nor Mg, neither I2 is the limiting reactant.</u>

<u>f) I2 is the limiting reactant</u>

<u>g) Nor Mg, neither I2 is the limiting reactant.</u>

<u>h) I2 is the limiting reactant</u>

<u>i) Mg is the limiting reactant</u>

Explanation:

Step 1: The balanced equation:

Mg(s) + I2(s) → MgI2(s)

For 1 mol of Mg we need 1 mol of I2 to produce 1 mol of MgI2

a. 100 atoms of Mg and 100 molecules of I2

We'll have the following equation:

100 Mg(s) + 100 I2(s) → 100MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

b. 150 atoms of Mg and 100 molecules of I2

We'll have the following equation:

150 Mg(s) + 100 I2(s) → 100 MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 100 Mg atoms. There will remain 50 Mg atoms.

There will be produced 100 MgI2 molecules.

c. 200 atoms of Mg and 300 molecules of I2

We'll have the following equation:

200 Mg(s) + 300 I2(s) →200 MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 200 I2 molecules. There will remain 100 I2 molecules.

There will be produced 200 MgI2 molecules.

d. 0.16 mol Mg and 0.25 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.16 mol of I2. There will remain 0.09 mol of I2.

There will be produced 0.16 mol of MgI2.

e. 0.14 mol Mg and 0.14 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.14 mol of Mg and 0.14 mol of I2. there will be produced 0.14 mol of MgI2

f. 0.12 mol Mg and 0.08 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.08 moles of Mg. There will remain 0.04 moles of Mg.

There will be produced 0.08 moles of MgI2.

g. 6.078 g Mg and 63.455 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 6.078 grams / 24.31 g/mol = 0.250 moles

Number of moles I2 = 63.455 grams/ 253.8 g/mol = 0.250 moles

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.250 mol of Mg and 0.250 mol of I2. there will be produced 0.250 mol of MgI2

h. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 2.00 grams/ 253.8 g/mol = 0.00788 moles

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.00788 moles of Mg. There will remain 0.03322 moles of Mg.

There will be produced 0.00788 moles of MgI2.

i. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 20.00 grams/ 253.8 g/mol = 0.0788 moles

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.0411 moles of Mg. There will remain 0.0377 moles of I2.

There will be produced 0.0411 moles of MgI2.

4 0
3 years ago
What are weak bonds that allow flexibility in an enzyme
34kurt
Enzymes are characterized to have weak bonds because their tertiary structure could easily bend and break because it will have to adjust to the shape of the substrate. It could be done via induced fitting or lock-and-key theory. These weak bonds are intermolecular forces like the London forces, electrostatic interactions and hydrogen bonding.
7 0
3 years ago
What would happen if a roof was made from wool?
vichka [17]

Answer:

B

Explanation:

it will not be waterproof anymore

7 0
3 years ago
How many grams of mercury are needed to react completely with 157g of sulfur to form hgs?
Salsk061 [2.6K]
<span>To solve this we need to balance the equations first.
 So Hg + S --> HgS is balanced
 One mole of Hg requires one mole of S to form one mole of HgS.
 Number of moles of Sulphur = mass/ molar mass = 157/32 = 4.906
So 4.90 moles of S reacts with 4.90 moles of Hg.
Hence there are 4.90 moles of 4.90 of Hg.
 Mass = number of moles * molar mass of Hg
Mass = 4.906 * 200.59 = 982.891g</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • what additional detail supports the point on view in the chart? 1-it doesn’t make sense to have an “honor system.” 2-someone sho
    14·1 answer
  • 7. A scientist is trying to determine the identity of an element. It is highly reactive in water
    7·1 answer
  • What food group deficiency causes kwashiorkor?? I’ll give 15points
    6·2 answers
  • Throughput is a term that refers to the amount of ?
    8·1 answer
  • Which is the following summaries expresses the main points of the best passages
    6·2 answers
  • Which of the following statements explain what is currently known about Earth’s oceans? Select all that apply.
    15·2 answers
  • Can someone help me please?
    9·1 answer
  • A type of building that absorbs the energy of seismic waves is a fixed-base building. True or False
    13·2 answers
  • Which statement best describes evidence that a chemical reaction occurs as a cake bakes
    11·2 answers
  • a plant cell has a solute potential of -2.0 bars and pressure potential of 0.0. what is its water potential? show your work if i
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!