Answer is: the freezing point is 1.63°C and boiling point is 82.01°C.<span>.
1) n(</span><span>nonelectrolyte solute) = 0.656 mol.
</span>m(C₆H₆ - benzene) = 869 g ÷ 1000 g/kg.
m(C₆H₆) = 0.869 kg.<span>
b(solution) = n(</span>nonelectrolyte solute) ÷ m(C₆H₆).<span>
b(solution) = 0.656 mol ÷ 0.869 kg.
b(solution) = 0.754 mol/kg.
2) ΔT = Kf(benzene) · b(solution).
ΔT = 5.12°C/m · 0.754 m.
ΔT = 3.865°C.
Tf = 5.50°C - 3.865°C.
Tf = 1.63°C.
</span>
3) ΔTb = Kb(benzene) · b(solution).
ΔTb = 2.53°C/m · 0.754 m.
ΔTb = 1.91°C.
Tb = 80.1°C + 1.91°C.
Tb = 82.01°C.<span>
</span>
Answer:
c
Explanation:
it could honestly be wrong but I'm not sure
The deeper the diver takes the helium balloon, the more it reduces in size. This is due to the pressure of the water column above pressing on the balloon. According to Boyle’s law (P= k*1/V.), as the volume of the balloon decreases, the pressure of the helium inside increases.