Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
. . . 'protect' its domestic steel industry, by
increasing the price of imported steel.
Answer:
12.5 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Height (h) = 8 m
Final velocity (v) at 8 m above the lowest point =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
The velocity of the roller coaster at 8 m above the lowest point can be obtained as follow:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 8)
v² = 0 + 156.8
v² = 156.8
Take the square root of both side
v = √156.8
v = 12.5 m/s
Therefore, the velocity of the roller coaster at 8 m above the lowest point is 12.5 m/s.
Answer:
d) False. If the angular momentum is zero, it implies in electro without turning, which would create a collapse towards the nucleus, so in both models the moment must be different from zero
Explanation:
Affirmations
a) true. The orbits are accurate in the Bohr model and probabilistic in quantum mechanics
b) True. If both give the same results and use the same quantum number (n)
c) True. If in angular momentum it is quantized, in the Bohr model too but it does not justify it
d) False. If the angular momentum is zero, it implies in electro without turning, which would create a collapse towards the nucleus, so in both models the moment must be different from zero