<u>Answer:</u> The angle of diffraction is 0.498°
<u>Explanation:</u>
To calculate the angle of diffraction, we use the equation given by Bragg, which is:

where,
n = order of diffraction = 3
= wavelength of the light =
(Conversion factor:
)
d = spacing between the crystal planes = 0.100 mm =
(Conversion factor: 1 m = 1000 mm)
= angle of diffraction = ?
Putting values in above equation:

Hence, the angle of diffraction is 0.498°
Answer:
3.066×10^21 photons/(s.m^2)
Explanation:
The power per area is:
Power/A = (# of photons /t /A)×(energy / photon)
E/photons = h×c/(λ)
photons /t /A = (Power/A)×λ /(h×c)
photons /t /A = (P/A)×λ/(hc)
photons /t /A = (680)×(678×10^-9)/(6.63×10^-34)×(3×10^-8)
= 3.066×10^21
Therefore, the number of photons per second per square meter 3.066×10^21 photons/(s.m^2).
Answer:
Ff = 839.05 N
Explanation:
We can use the equation:
Ff = μ*N
where <em>N</em> can be obtained as follows:
∑ Fc = m*ac ⇒ N - F = m*ac = m*ω²*R ⇒ N = F + m*ω²*R
then if
F = 32 N
m = 133 Kg
R = 0.635 m
ω = 95 rev /min = (95 rev / min)(2π rad / 1 rev)(1 min / 60 s) = 9.9484 rad /s
we get
N = 32 N + (133 Kg)*(9.9484 rad /s)²*(0.635 m) = 8390.53 N
Finally
Ff = μ*N = 0.10*(8390.53 N) = 839.05 N
Answer:
the wavelength is 9.8 meters
Explanation:
We can use the relationship:
Velocity = wavelenght*frequency.
Initially we have:
wavelenght = 4.9m
velocity = 9.8m/s
then:
9.8m/s = 4.9m*f
f = 9.8m/s/4.9m = 2*1/s
now, if the velocity is doubled and the frequency remains the same, we have:
2*9.8m/s = wavelenght*2*1/s
wavelenght = (2*9.8m/s)*(1/2)s = 9.8 m
Answer: b
Explanation:
B is a chemical property
Reference what are physical properties
And what are chemical properties
Under certain conditions it can release a gas is the key words letting you know this is a chemical property