Answer: 0.5N
Explanation: if the system is at equilibrium, sum of the torque will be equal to zero.
But if they are not in equilibrium.
U will find the difference in the two torque
find the attached file for solution
Explanation:
The expression is :

A =[LT], B=[L²T⁻¹], C=[LT²]
Using dimensional of A, B and C in above formula. So,
![A=B^nC^m\\\\\ [LT]=[L^2T^{-1}]^n[LT^2}]^m\\\\\ [LT]=L^{2n}T^{-n}L^mT^{2m}\\\\\ [LT]=L^{2n+m}T^{2m-n}](https://tex.z-dn.net/?f=A%3DB%5EnC%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3D%5BL%5E2T%5E%7B-1%7D%5D%5En%5BLT%5E2%7D%5D%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%7DT%5E%7B-n%7DL%5EmT%5E%7B2m%7D%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%2Bm%7DT%5E%7B2m-n%7D)
Comparing the powers both sides,
2n+m=1 ...(1)
2m-n=1 ...(2)
Now, solving equation (1) and (2) we get :

Hence, the correct option is (E).
The work done by the three students is 3,000 J.
The energy transferred in the process is 3,000 J.
<h3>What is work done?</h3>
- Work done is the product of force and distance moved by the object.
W = Fd
The work done by the three students is calculated as follows;
W = 300 x 10
W = 3,000 J
<h3>What is energy transfer?</h3>
- This is means by which energy is converted from one form to another.
The energy transferred in the process is determined by work energy theorem.
E = W
E = 3,000 J
Learn more about work-energy theorem here: brainly.com/question/22236101
1 mA = 0.001 A
Therefore, 5 mA = 0.001 * 5
=0.005 A
Resistance = voltage / current
= 100 / 0.005
= 20000 ohms
Current = voltage / resistance
= 25 / 20000
= 0.00125 A (or) 1.25 mA
Answer:
See explanation below
Explanation:
If we are talking about the kinetic energy of the cylinder of oxygen:
The kinetic energy possessed by any object is given by

where
m is the mass of the object
v is its speed
In this case, we have one cylinder carried by a car and one standing on a platform: this means that the speed of the cylinder carried by the car will be different from zero (and so also its kinetic energy will be different from zer), while the speed of the cylinder standing on the platform will be zero (and so its kinetic energy also zero). Therefore, the kinetic energy of the cylinder carried by the car will be larger than that standing on a platform.
Instead, if we are talking about the kinetic energy due to the random motion of the molecules of oxygen inside the cylinder:
The kinetic energy of the molecules in a gas is directly proportional to the absolute temperature of the gas:

where k is called Boltzmann constant and T is the absolute temperature of the gas. Therefore, we see that K does not depend on whether the gas is in motion or not, but only on its temperature - therefore, in this case there is no difference between the kinetic energy of the cylinder carried by the car and that standing on the platform (assuming they are at the same temperature)