Aluminum or glass I think
Answer:
The boiling point of sample X and sample Y are exactly the same.
Explanation:
The difference between sample X and sample Y is that they occupy different volumes. However, they both contain pure water. Remember that pure water has uniform composition irrespective of its volume.
Volume does not affect the boiling point as long as the volume is small enough not to give rise to significant pressure changes in the liquid.
The boiling point of a liquid is the temperature at which the pressure exerted by the surroundings upon a liquid is equaled by the pressure exerted by the vapour of the liquid; under this condition, addition of heat results in the transformation of the liquid into its vapour without raising the temperature.
It can be clearly seen from the above that the volume of a solution of pure water does not affect its boiling point hence sample X and sample Y will have the same boiling point.
Answer:
<u>One lone-Pair is present in Ammonia</u>
<u></u>
Explanation:
The number of valence electron in N = 5
The number of Valence electron in H = 1
The formula of ammonia = NH3
Total valence electron in ammonia molecule = 5 +3(1) = 5+3 = 8
The lewis structure suggest that :
Nitrogen completes its octet by sharing the electron pair with 3 hydrogen atoms.
3 electron of Nitrogen are involved in sharing with Hydrogen
So,<u><em> remaining two electron are left non-bonded</em></u> . Hence they exist as lone- pair
So, there is only 1 lone pair in the ammonia molecule .
The shape of NH3 is bent according to VSEPR theory . This is so because the presence of 1 lone pair causes more repulsion and occupy more space.
Thus the lone pair is changing the shape of the ammonia molecule . It also increase the dipole moment of the molecule , which gives polarity to it.
You have to calculate the oxidation estates of the atoms in each compound.
I will start with K2Cr2O7 because I believe that Cr is the best candidate to reduce its oxidation number in 3 units.
In K2Cr2O7:
- K has oxidation state of 1+, then K2 has a charge of 2* (1+) = 2+.
- O has oxidation state of 2*, then O7 has a charge of 7* (2-) = 14-.
That makes that Cr2 has charge of 14 - 2 = +12, so each Cr has +12/2 = +6 oxidation state.
In Cr2O3:
- O has oxidation state of 2-, then O3 has charge 3 * (2-) = - 6
- Then, Cr2 has charge 6+, and each Cr has charge 6+ / 2 = 3+.
So, we have seen that Cr reduced its oxidation state in 3 units, from 6+ to 3+.
Answer: Cr has a change in oxidation number of - 3.
A word equation is a written description of a chemical reaction.
All word equations start with the reactants.
Then, what comes next is the word "react to form."
Finally, the products of the equation are mentioned.
An example is,
Zinc and Hypochondriac acid react to form hydrogen gas and zinc chloride.