Answer:
Gamma rays occupy the short-wavelength end of the spectrum; they can have wavelengths smaller than the nucleus of an atom. Visible light wavesare one-thousandths the width of human hair--about a million times longer than gamma rays. Radio waves, at the long-wavelength end of the spectrum, can be many meters long.
Answer:
he factor for the temporal part 1.296 107 s² = h²
m / s² = 12960 km / h²
Explanation:
This is a unit conversion exercise.
In the unit conversion, the size of the object is not changed, only the value with respect to which it is measured is changed, for this reason in the conversion the amount that is in parentheses must be worth one.
In this case, it is requested to convert a measure km/h²
Unfortunately, it is not clearly indicated what measure it is, but the most used unit in physics is m / s² , which is a measure of acceleration. Let's cut this down
the factor for the distance is 1000 m = 1 km
the factor for time is 3600 s = 1 h
let's make the conversion
m / s² (1km / 1000 m) (3600 s / 1h)²
note that as time is squared the conversion factor is also squared
m / s² = 12960 km / h²
the factor for the temporal part 1.29 107 s² = h²
Displacement = 0, assuming that he runs back to original position
Average velocity is displacement/ time, since displacement =0, velocity is also 0
Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final jeight
is the bomb'e initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's fina velocity
Knowing this, let's begin with the answers:
<h3>b) Time</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign ony indicates the direction is downwards
<h3>c) Range</h3>
Substituting (7) in (2):
(11)
(12)
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186