<span>it will be changed by changing the medium of the wave</span>
Answer:
N / NEWTONS
Explanation:
Named after Isaac Newton, the man who discovered gravity
Explanation:
(a) Given:
Δx = 150 m
v₀ = 27 m/s
v = 54 m/s
Find: a
v² = v₀² + 2aΔx
(54 m/s)² = (27 m/s)² + 2a (150 m)
a = 7.29 m/s²
(b) Given:
Δx = 150 m
v₀ = 0 m/s
a = 7.29 m/s²
Find: t
Δx = v₀ t + ½ at²
150 m = (0 m/s) t + ½ (7.29 m/s²) t²
t = 6.42 s
(c) Given:
v₀ = 0 m/s
v = 27 m/s
a = 7.29 m/s²
Find: t
v = at + v₀
27 m/s = (7.29 m/s²) t + 0 m/s
t = 3.70 s
(d) Given:
v₀ = 0 m/s
v = 27 m/s
a = 7.29 m/s²
Find: Δx
v² = v₀² + 2aΔx
(27 m/s)² = (0 m/s)² + 2 (7.29 m/s²) Δx
Δx = 50 m
Answer:
stop using brainly and learn this bs in class
Explanation:
Answer:
0.33 s
Explanation:
For this case, as the object is hung on the end of an unstretched spring, we can consider this system as a simple pendulum.
For this system, we can determine the period of the motion using the following formula:
T = 2π√(L/g)
Where: T = period (in sec), L = lenght of the spring, g = acceleration of garvity = 9.8 m/s²
By the exact time the object is 2.75 cm before coming to rest, that will be the lenght of the spring we can consider (2.75 cm = 0.0275 m)
Finally:
T = 2π√(0.00275/9.8)
T = 0.33 sec