Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.
Answer:
MATERIAL MEDIUM
Explanation:
Wave is a disturbance that travels through a medium and transfer energy from one point to another without causing any permanent displacement of the medium itself. The two forms of wave are the mechanical wave and the electromagnetic waves.
Mechanical wave is a wave with requires MATERIAL MEDIUM for its propagation. This means that before wave can be propagated at times, material medium is needed e.g a ripple tank. A ripple tank is a mechanical device that generates waves using an instrument called stroboscope attached to it. This kind of wave requires an external source before it can propagate compared to electromagnetic waves that does not require material medium for its propagation.
Answer:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
Explanation:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
Applying Newtons version of Kepler's third law or the orbital velocity law to the star orbiting 40000 light years from the center of the Milky Way Galaxy allows us to determine the mass of the Milky Way Galaxy that lies within 40000 light years in the galactic center.
<h3>
</h3><h3>What is orbital velocity law?</h3>
The orbital velocity law states that, the orbital velocity is directly proportional to the mass of the body for which it is being calculated and inversely proportional to the radius of the body. Earths orbital velocity near its surface is around 8km/sec if the air resistance is disregarded.
In space exploration, orbital velocity is a crucial topic. Space authorities heavily rely on it to comprehend how to launch satellites. It aids scientists in figuring out the velocities at which satellites must orbit a planet or other celestial body to prevent collapsing into it. The speed at which one body orbits the other body is known as the orbital velocity. The term "orbit" refers to an object's consistent circular motion around the Earth. The distance between the object and the earth's centre determines the orbit's velocity.
To know more about orbital velocity law, refer brainly.com/question/11353717
#SPJ4
The forces (what causes the ball to accelerate) are gravity, friction, and the normal force. In this case, gravity is a downward force caused by the gigantic mass of the Earth and the mass of the ball. Keep in mind that a force is acceleration. Acceleration is a change in velocity. The ball speeds up. Than it stops speeding up at a certain point where the frictional force (along with air friction) equals the parallel component of gravity.
Newton's Second Law States- The greater mass of an object, the more force it will take to accelerate the object.