Answer:
B. Attract each other with a force of 10 newtons.
Explanation:
Statement is incorrectly written. <em>The correct form is: A </em>
<em> charge and a </em>
<em> at a distance of 0.3 meters. </em>
The two particles have charges opposite to each other, so they attract each other due to electrostatic force, described by Coulomb's Law, whose formula is described below:
(1)
Where:
- Electrostatic force, in newtons.
- Electrostatic constant, in newton-square meters per square coulomb.
- Magnitudes of electric charges, in coulombs.
- Distance between charges, in meters.
If we know that
,
and
, then the magnitude of the electrostatic force is:


In consequence, correct answer is B.
Hubble space telescope, Hubble deep field guide, moon, mercury, Saturn, sun, galaxy messier 101
Answer:
The electric field strength at the midpoint of the line joining the charges is zero (0)
Explanation:
Given that the two charges are both positive (same charge) and are equal in magnitude that is 6uC. The electric field strength at the midpoint of the line joining the two charges will be equal and opposite in magnitude, therefore they will cancel each other out and the electric field strength at this point will be equal to zero.