Answer:
b) +2 and +3.
Explanation:
Hello,
In this case, given the molecular formulas:

And:

We can relate the subscripts with the oxidation states by knowing that they are crossed when the compound is formed, for that reason, we notice that oxygen oxidation state should be -2 for both cases and the oxidation state of X in the first formula must be +2 since both X and O has one as their subscript as they were simplified:

Moreover, for the second case the oxidation state of X should be +3 in order to obtain 3 as the subscript of oxygen:

Thus, answer is b)+2 and +3
Best regards.
L

mol/dm³ is measure for molarity
The compound that would have the highest osmotic pressure when dissolved in water is
.
So, option D is correct one.
The dissociation of one molecule of
gives the maximum number of ions when dissolved in water ( 4 ions ) . Osmotic pressure is a colligative property and depends upon number of solute particles present in the solution . The solution having maximum number of solute particles will have maximum number of the osmotic pressure .
All other given molecules gives less number of number of ions when dissolved in water as compare to of
.
To learn more about osmotic pressure
brainly.com/question/10046758
#SPJ4
Answer: n∗R=22+273.15/4.2∗5n
P2=n∗R∗T2/V2=n∗R∗33.6+273.15/10
Explanation:
Answer:
Total Kcal energy produced in the catabolism of mannoheptulose = 1184 Kcal
Explanation:
The molecular formula of mannoheptulose is C₇H₁₄O₇.
The structure is as shown in the attachment below.
Number of C-C bonds present in mannoheptulose = 6
Number of C-H bonds present in mannoheptulose = 8
Since the each C-C bond contains 76 Kcal of energy,
Amount of energy present in six C-C bonds = 6 * 76 = 456 Kcal
Also, since each C-H bond contains 91 Kcal of energy;
amount of energy present in eight C-H bonds = 8 * 91 = 728 Kcal
Total Kcal energy produced in the catabolism of mannoheptulose = 456 + 728 = 1184 Kcal