To solve this problem it is necessary to apply the concepts related to Dopler's Law. Dopler describes the change in frequency of a wave in relation to that of an observer who is in motion relative to the Source of the Wave.
It can be described as

c = Propagation speed of waves in the medium
= Speed of the receiver relative to the medium
= Speed of the source relative to the medium
Frequency emited by the source
The sign depends on whether the receiver or the source approach or move away from each other.
Our values are given by,
Velocity of car
velocity of motor
Velocity of sound
Frequency emited by the source
Replacing we have that



Therefore the frequency that hear the motorcyclist is 601.7Hz
Answer:
C. Why you must push harder to move a car farther.
Explanation:
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Hence, Newton's 2nd Law explains why you must push harder to move a car farther because of its mass. Thus, it is important to increase the force that the engine provides and decrease the mass of the car.
Water treatment plants have been in existence for almost 220 years
Answer:
The skater has mechanical/gravitational potential energy at the two meter mark. The skater gets to two meters high on the other end of the ramp. In terms of the conservation of energy, the skater will never go higher than two meter on the other end of the the ramp because energy can be neither created nor destroyed.
Explanation:
I hoping it is right!!!∪∧∪ ∪ω∪
The acceleration rate would be .14667 m/s^2