Consider two variables said to be "inversely proportional" to each other. If all other variables are held constant, the magnitude or absolute value of one inversely proportional variable decreases if the other variable increases, while their product (the constant of proportionality k) is always the same.
Answer:
energy that is stagnant and cannot be changed
Kinetic energy is never negative, but potential energy can be.
Potential energy depends on height above some reference level,
and you can pick any level you want as the reference. So, if the
object is below the reference level you pick, then its potential
energy relative to your reference level is negative.
What that means is: You have to lift it / do work on it / give it more
energy than it has now ... in order to move it to the reference level.
(That's exactly the situation with electrons bound to an atom. Their
energy is considered negative, because we have to do work and
give them more energy to rip them away from the atom.)
_____________________________________
Regarding the other choices:
-- Kinetic energy is scalar ... Yes. So is potential energy.
-- Kinetic energy increases with height ...
No. It doesn't, but potential energy does.
-- Kinetic energy depends on position ...
No. It doesn't, but potential energy does.
Answer:
r = 0m is the Minimum distance from the axis at which the block can remain in place wothout skidding.
Explanation:
From a sum of forces:
where Ff = μ * N and
N - m*g = 0 So, N = m*g. Replacing everything on the original equation:
(eq2)
Solving for r:
If we analyze eq2 you can conclude that as r grows, the friction has to grow (assuming that ω is constant), so the smallest distance would be 0 and the greatest 1.41m. Beyond that distance, μ has to be greater than 0.83.
Given:
The balanced chemical reaction of the synthesis of phosphorus trichloride:
2P + 3Cl2 ===> 2PCl3
Initial amount of phosphorus = 15 grams
The amount of product produced from 15 grams of phosphorus:
15 grams / 31 g/mol * (2/2) = 66.46 grams PCl3
The amount of chlorine is 44.31 grams, nearest to 45 grams.