The correct answer is <em>B. a Salt </em><em>because The reaction of an acid and a base is called a neutralization reaction because the properties of both the acid and base are diminished or neutralized when they react. A neutralization reaction is a reaction of an acid with a base in aqueous solution to produce water and a salt, as shown by the following equation:</em>
<em>acid + base → salt + water</em>
<em />
<em>* Hopefully this helps:) Mark me the brainliest:) </em>
<em>∞ 234483279c20∞</em>
This problem is providing us with the molality of a solution of calcium iodide as 0.01 m. So the most likely van't Hoff factor is required and theoretically found to be 3 due to the following:
<h3>Van't Hoff factor:</h3>
In chemistry, the correct characterization of solutions also imply the identification of the ions it will release in aqueous solution. For that reason, the van't Hoff factor gives us an idea of this number, according to the formula the solute has got.
In such a way, for calcium iodide, we write its ionization equation as shown below:

Assuming it is able to ionize due to the low molality, because if it was higher, then it won't ionize. Hence, since we have three moles of ion products, one Ca²⁺ and two I⁻, we can conclude the van't Hoff factor would be 3, although calculations may lead to a different, yet close result.
Learn more about the van't Hoff factor: brainly.com/question/23764376
For a gas containing 80% CH4 and 20% He is sent through a quart diffusion tube, the composition is mathematically given as
%He=12.5%
%CH4=87.5%
<h3>What is the
composition of the waste gas if 100 kg moles of gas are processed per minute?</h3>
Generally, the equation for the Material balance is mathematically given as
F=R+W
Therefore
100=0.20*1000+W
W=80kmol/min
In conclusion, waste gas compose
2.0/100*100=50/100*20+%*80
Hence
%He=12.5%
%CH4=87.5%
Read more about Chemical reaction
brainly.com/question/16416932
The arrangement of particles that make up an ionic compound would be an ionic lattice type of crystal arrangement. An ionic lattice type of structure will be formed due to many of the ionic bonds formed between the oppositely charged ions of the metal and nonmetal.