Answer:
An Omnivore
Explanation: An <u>omnivore</u> is a kind of animal that eats either other animals or plants. Some omnivores will hunt and eat their food, like carnivores, eating herbivores and other omnivores. Some others are scavengers and will eat dead matter. Many will eat eggs from other animals.
Omnivores eat plants, but not all kinds of plants. Unlike herbivores, omnivores can't digest some of the substances in grains or other plants that do not produce fruit. They can eat fruits and vegetables, though. Some of the insect omnivores in this simulation are pollinators, which are very important to the life cycle of some kinds of plants.
Answer:
Explanation:
We will need a balanced equation with moles, so let's gather all the information in one place.
CH₃C₆H₄NH₂·HCl + (CH₃CO)₂O ⟶ CH₃C₆H₄NHCOCH₃ + junk
V/mL: 70.
c/mol·L⁻¹: 0.167
For simplicity in writing , let's call p-toluidine hydrochloride A and N-acetyl-<em>p</em>-toluidine B.
The equation is then
A + Ac₂O ⟶ B + junk
1. Moles of A

2. Moles of B
The molar ratio is 1 mol B:1 mol A
Moles of B = moles of A = 12 mmol = 0.012 mol

Answer:
23.71J is the work that the gas do.
Explanation:
The work that a gas do under isobaric conditions follows the formula:
W = P*ΔV
<em>Where W is work in atmL, P is the pressure and ΔV is final volume -Initial volume In Liters</em>
Replacing with the values of the problem:
W = P*ΔV
W = 0.600atm*(0.44000L - 0.0500L)
W = 0.234atmL
In Joules (1atmL = 101.325J):
0.234atmL × (101.325J / 1 atmL) =
<h3>23.71J is the work that the gas do.</h3>
<em />
I think the anwer is electrolyte :)... i had it on a test a couple days ago.
£ is not a molecule. It is a currency. That is pounds sterling, used in the U.K.