Explanation:
First consider that each hand works as a fulcrum: a pivot point where the barbell can rotate.
Now consider only the left hand. If the center of mass of the barbell is between hands (in the middle) it is displaced respect the fulcrum, therefore the weight which is pushing the bar downwards becomes a rotational force. The same thing happens to the other hand. Now, if more weight is added to the left hand the center of mass is displaced towards the left hand and depending how much weight is added, the center of mass will change its position and therefore the torque each hand experiences changes.
If the center of mass is still between hands: The torque remains almost the same changing only the magnitudes but not the direction.
If the center of mass is on the hand: there is no torque for the left hand because there is no leaver.
If the center of mass is to the left: now the torque changes direction and both hands need to stop it in the same direction.
(see diagram below)
Answer:
Force = 2802.8 Newton
Explanation:
Given the following data;
Mass = 130 lbs
But, 2.2 lbs = 1.0 kg
130 lbs to kg = 130 * 2.2 = 286 kg
Acceleration due to gravity = 9.8m/s²
To find the force in Newton;
Force = mass * acceleration due to gravity
Force = 286 * 9.8
Force = 2802.8 Newton
Answer:
By a factor of 1/4.
Explanation:
The impulse force that applies to an object undergoing rapid deceleration just before coming to a stop on the ground is given by the following formula,
in which
,
represent the change in momentum and the time taken for that change.
If one increases the time that is taken for the momentum change (which remains constant for this situation) by a factor 4 and if that new force is represented by
, the following manipulation confirms the answer to this question.
![\begin{aligned}\\\small F_1 &=\small \frac{\Delta (mV)}{4\Delta t}\\\\&=\small \frac{1}{4}\times\bigg[\frac{\Delta (mV)}{\Delta t}\bigg]\\\\&=\small \frac{1}{4}F\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5C%5C%5Csmall%20F_1%20%26%3D%5Csmall%20%5Cfrac%7B%5CDelta%20%28mV%29%7D%7B4%5CDelta%20t%7D%5C%5C%5C%5C%26%3D%5Csmall%20%5Cfrac%7B1%7D%7B4%7D%5Ctimes%5Cbigg%5B%5Cfrac%7B%5CDelta%20%28mV%29%7D%7B%5CDelta%20t%7D%5Cbigg%5D%5C%5C%5C%5C%26%3D%5Csmall%20%5Cfrac%7B1%7D%7B4%7DF%5Cend%7Baligned%7D)
Here
is the force that was applied to the object previously.
#SPJ4
Answer:
An electron orbital describes a three-dimensional space where an electron can be found 90% of the time.
Explanation:
According to Heisenberg's theory we cannot observe the position and velocity of an electron in an orbit, but if they were around the nucleus (in orbit), it would be possible to know its velocity and position, which would be contrary to the principle of Heisenberg So we can say that no electron revolves around a certain orbit around the nucleus, so we can only predict if the electron will be in the right position at the right time.
From there we find two definitions for electron orbital let's see:
- Orbital is considered the region of space, where each electron spends most of its time.
- Orbital is considered the region of space that is most likely to find an electron.
Answer:
180^2 + 390^2 = force ^2 (Pythagoras) root of force^2 = 429.5N approx resultant force Acceleration = Force/Mass 429.5/270 = 1.5907 ms^-2 in a Southwesterly direction.
Explanation: