Answer:
bombarding it with an energetic particle
Explanation: nuclear reaction, a change in the identity or characteristics of an atomic nucleus, induced by bombarding it with an energetic particle. The bombarding particle may be an alpha particle, a gamma-ray photon, a neutron, a proton, or a heavy-ion.
Answer:
20 g Ag
General Formulas and Concepts:
<u>Chemistry - Stoichiometry</u>
- Using Dimensional Analysis
<u>Chemistry - Atomic Structure</u>
Explanation:
<u>Step 1: Define</u>
[RxN] Cu (s) + AgNO₃ (aq) → CuNO₃ (aq) + Ag (s)
[Given] 10 g Cu
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol Cu = 1 mol Ag
Molar Mass of Cu - 63.55 g/mol
Molar Mass of Ag - 197.87 g/mol
<u>Step 3: Stoichiometry</u>
<u />
= 16.974 g Ag
<u>Step 4: Check</u>
<em>We are given 1 sig fig. Follow sig fig rules and round.</em>
16.974 g Ag ≈ 20 g Ag
Answer:
D. Element.
Explanation:
Atoms form elements. Elements form molecules. Molecules form compounds.
Answer:
Specific heat of metal = 0.26 j/g.°C
Explanation:
Given data:
Mass of sample = 80.0 g
Initial temperature = 55.5 °C
Final temperature = 81.75 °C
Amount of heat absorbed = 540 j
Specific heat of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 81.75 °C - 55.5 °C
ΔT = 26.25 °C
540 j = 80 g × c × 26.25 °C
540 j = 2100 g.°C× c
540 j / 2100 g.°C = c
c = 0.26 j/g.°C