Answer: all the above options are correct.
Explanation:
In sidewall markings,the load index is given as a letter,traction and temperature ratings are based on the speed rating of the tire,the tire's recommended inflation pressure and load are indicated and the DOT code indicates when and where the tire was made.
Answer:
I thinl it is I'm not sure though
Answer:
work output is always less than work input - the ratio is less than 1.
Explanation:
This principle comes from the fact that a machine or system cannot produce more work than is supplied to it, because this would violate the energy conservation law (work is a type of mechanical energy).
In theoretical machines called "ideal machines" the input work is the same as the output work, but these machines are only theoretical because in real applications there is always some type of energy loss, either in heat produced by a machine or processes for its operation, for this reason the output work is always less than the input work.
Regarding the ratio work output to work input:
because work input WI is always greater than work output WO.
Water, land. breath using skin and lungs
Answer:
B.
It will be greater than 10 J.
Explanation:
The total mechanical energy of an object is the sum of its potential energy (PE) and its kinetic energy (KE):
E = PE + KE
According to the law of conservation of energy, when there are no frictional forces on an object, its mechanical energy is conserved.
The potential energy PE is the energy due to the position of the object: the highest the object above the ground, the highest its PE.
The kinetic energy KE is the energy due to the motion of the object: the highest its speed, the largest its KE.
Here at the beginning, when it is at the top of the roof, the baseball has:
PE = 120 J
KE = 10 J
So the total energy is
E = 120 + 10 = 130 J
As the ball falls down, its potential energy decreases, since its height decreases; as a result, since the total energy must remain constant, its kinetic energy increases (as its speed increases).
Therefore, when the ball reaches the ground, its kinetic energy must be greater than 10 J.